chứng minh:(a+b/c+d)^3=a^3-b^3/c^3-d^3
Cho a+b+c+d=0
a) Chứng minh a^3+b^3+c^3+d^3=3(ab-cd)(c+d)
b)Chứng minh (a+b+c+)^3=a^3 + b^3 + c^3+3(a+b)(b+c)(c+a)
c)Cho c-a=b+d. Chứng Minh a^3+b^3-c^3+d^3=3(d-c)(ab+cd)
a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (đpcm)
a, a+b/a-b=c+a/c-a Chứng minh a^2=b.c
b, a/b=b/c=c/d. Chứng minh a^3+b^3+c^3/b^3+c^3+d^3=a/d
Cho a/b=b/c=c/d với b+c+d khác 0. Chứng minh: +) a^3+b^3+c^3/ b^3+c^3 - d^3=(a+d-c/b+c-d)^3
Lê Minh Tuấn bn tham khảo nha:
a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)
a/b=b/c=c/d
Chứng minh a^3+b^3+c^3/b^3+c^3+d^3=a/d
Chứng minh rằng nếu a/b=b/c=c/d thì a^3+b^3+c^3/b^3+c^3+d^3=a/d
Cho b^2 = ac ; c^2 = bd với b, c, d ≠ 0; b+c ≠ 0; b^3+c^3≠ d^3 3. Chứng minh rằng:
a) \(\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\)
b) \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) Chứng minh rằng \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\b=ck\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{b^3k^3+c^3k^3+d^3k^3}{b^3+c^3+d^3}=k^3\)
\(\dfrac{a}{d}=\dfrac{bk}{d}=\dfrac{ck^2}{d}=\dfrac{dk^3}{d}=k^3\)
Do đó: \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
Cho a/b=c/d Chứng minh: (a-b/c-d)^3=a^3+b^3/c^3+d^3.Giúp mình với!
Ta có: a/b=c/d => a/c=b/d=(a-b)/(c-d)
=> (a-b)3/(c-d)3=a3/c3 (1)
Mặt khác: a/c=b/d =>a3/c3=b3/d3=(a3+b3)/(c3+d3) (2)
Từ (1) và (2) => đccm
cho tỉ lệ thức a/b=c/d chứng minh (a+b/c+d)^3 = a^3+b^3/c^3+d^3
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có:\(\left(\dfrac{a+b}{c+d}\right)^3=\left(\dfrac{bk+b}{dk+d}\right)^3=\left(\dfrac{b.\left(k+1\right)}{d.\left(k+1\right)}\right)^3=\dfrac{b^3}{d^3}\)(1)
Lại có :\(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3.\left(k^3+1\right)}{d^3.\left(k^3+1\right)}=\dfrac{b^3}{d^3}\)(2)
Từ (1) và (2) => ĐPCM
Từ a/b=c/d
=>a/c=b/d=a+b/c+d
<=>a^3/c^3=b^3/d^3=(a+b)^3(c+d)^3
=a^3+b^3/c^3+d^3
Vậy
(a+b)^3(c+d)^3=a^3+b^3/c^3+d^3 (đpcm)
cho a/c=c/b=b/d. chứng minh rằng a^3+c^3-b^3/c^3+b^3-d^3=a/d