Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hải
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Nguyễn Huy Hoàng
5 tháng 1 2020 lúc 10:15

Học đến tính chât tia phân giác chia thành tỷ lệ chưa

Khách vãng lai đã xóa
Tết
5 tháng 1 2020 lúc 10:27

\(\Delta ABC\)có: đường phân giác trong của C cắc cạnh AB tại D. Lấy điểm E trên tia CD sao cho \(\widehat{CBD}=\widehat{CEA}\)

Xét \(\Delta CBD\)và \(\Delta CEA\)có: 

\(\widehat{BCD}=\widehat{ACD}\)( đường phân giác trong của C cắc cạnh AB tại D )

\(\widehat{CBD}=\widehat{CEA}\)

\(\Rightarrow\Delta CBD\)đồng dạng với \(\Delta CEA\left(g.g\right)\)

\(\Rightarrow\frac{CD}{CA}=\frac{BC}{EC}\Leftrightarrow BC.AC=EC.CD\)

Mà \(EC=CD+DE\)

nên \(BC.AC=CD\left(CD+DE\right)\)

\(\Leftrightarrow BC.AC=CD^2+CD.DE\)

\(\Rightarrow CD^2< CA.CB\)

Khách vãng lai đã xóa
Lương Hải Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 0:52

a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)

b: Sửa đề: vuônggóc BC, cắt AC tại H

Xet ΔCDH vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDH đồng dạng với ΔCAB

c: BD/DC=AB/AC=4/3

boa hancock
Xem chi tiết
wcdccedc
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
17 tháng 9 2023 lúc 21:32

\(\widehat A = 120^\circ \)nên \(\widehat {DAE} = 60^\circ \)(AD là phân giác của góc A).

Ta có: DE // AB nên  \(\widehat {CED} = \widehat {EAB} = 120^\circ \)(hai góc đồng vị). Ba điểm A, E, C thẳng hàng nên góc AEC bằng 180° 

\(\Rightarrow \widehat {AED} = 180^\circ  - \widehat {CED} = 180^\circ  - 120^\circ  = 60^\circ \)

Tam giác ADE có \(\widehat {EAD} = \widehat {ADE}\) (\(=60^0\)) nên là tam giác cân.

Mà \(\widehat {DEA} = 60^\circ \)

Do đó, tam giác ADE đều ( tam giác cân có 1 góc bằng \(60^0\)).

nguyen van thang
Xem chi tiết
Đỗ Nhật Minh
Xem chi tiết
yeulannhieulam
Xem chi tiết