So sánh:1/1×2+1/2×3+...+1/99×100 và 1
so sánh S = 1/3 - 2/3^2 + 3/3^3 -4/3^4 + ... + 99/3^99 -100/3^100 và 1/5
so sánh: 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^99 +1/3^100 và 1/2
So sánh A và B biết : A= 1+7+7^2 +......+7^100 / 1 + 7 + 7^2 +..... +7^99 ; B = 1 + 9 + 9^2 + 9^3 +......+9^100 / 1+9+9^2+9^99
Cho S = \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+....+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) so sánh S và \(\dfrac{1}{5}\)
so sánh a và b, biết
a = 100 - ( 1 + 1/2 = 1/3 + ... + 99/100) b = 1/2 + 2/3 + 3/4 +... +99/100
so sánh A = 1 + 2^2 + 2^3 + ... + 2^99 + 2^100 và B = 2^101 -1
Ta có \(A=1+2^2+2^3+....+2^{99}+2^{100}\)
\(2A=2+2^3+2^4+2^5+...+2^{100}+2^{101}\)
Suy ra \(2A-A=2^{101}-1=B\)
Do đó A =B
Vậy A =B
A = 1 + 2^2 + 2^3 + ... + 2^99 + 2^100
2A = 2 + 2^3 + 2^4 + ... + 2^100 + 2^101
2A - A = ( 2 + 2^3 + 2^4 + ... + 2^100 + 2^101 ) - ( 1 + 2^2 + 2^3 + ... + 2^99 + 2^100 )
A = 2^101 - 1
Vì A = 2^101 - 1 và B = 2^101 - 1
=> A = B
Vậy A=B
A=1+2^2+2^3+...+2^99+2^100
2A=2+2^3+2^4+...+2^100+2^101
2A-A=(2+2^3+2^4+...+2^100+2^101)-(1+2^2+2^3+...+2^99+2^100)
A=2^101-[2-(1+2^2)]
A=2^101-3
Vậy A=2^101-3 và B=2^101-1
=> A<B
so sánh
P=\(\dfrac{1+7^2+7^3+...+7^{100}}{1+7^2+7^3+...+7^{99}}\)
Q=\(\dfrac{1+9^2+9^3+...+9^{100}}{1+9^2+9^3+...+9^{99}}\)
Cho S= 1/3-2/32+3/33-4/34+...+99/399-100/3100. So sánh S và 1/5
\(\frac{99^1}{1}+\frac{99^2}{1}+\frac{99^3}{1}+...+\frac{99^{100}}{1}\)so sánh với 1001 vạn