Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Trần Hạnh Minh
9 tháng 3 2023 lúc 20:59

2^100 = (2^4)^25 = 16^25 = (.....6)

vậy chữ số tận cùng của số 2^100 là 6

Trần Hạnh Minh
9 tháng 3 2023 lúc 21:01

2^100 = (2^4)^25 = 16^25 = (.....6)

vậy chữ số tận cùng của số 2^100 là 6

Công Chúa Tình Yêu
Xem chi tiết
Zlatan Ibrahimovic
5 tháng 6 2017 lúc 15:53

Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.

=>a)=...5

b)=...0.

c=...6

d=...1.

e)9^18=(9^2)^9=81^9=...1

nana
Xem chi tiết
Khánh Vy
2 tháng 2 2019 lúc 22:49

a, vì \(1978\equiv8\)( mod 10 ) \(\Rightarrow1978^4\equiv6\) ( mod 10 )

mặt khác : \(1978^{4k}\equiv6\) ( mod 10 )

Vậy chữ số tận cùng của C là 6

b. vì \(C\equiv6\) ( mod 10 ) nên \(C^{20}\equiv76\)( mod 100 ) \(\Rightarrow C^{20m}\equiv76\)( mod 100 )

mặt khác : \(1986\equiv6\)( mod 20 ) \(\Rightarrow1986^8\equiv16\)( mod 20 )

do đó : \(1986^8=20k+16\); với k thuộc N

\(\Rightarrow C=1978^{20k+16}=1978^{16}.\left(1978^{20}\right)^k\equiv1978^{16}.76\) ( mod 100 )

lại có : \(1978\equiv-22\)( mod 100 ) \(\Rightarrow1978^4\equiv56\)( mod 100 )

\(\Rightarrow\left(1978^4\right)^4\equiv56^4\) ( mod 100 ) hay \(1978^{16}\equiv96\)( mod 100 )

từ đó ta có : \(C\equiv96.76\)( mod 100 ) \(\Rightarrow C\equiv76\)( mod 100 )

vậy C có hai chữ số tận cùng là 76

Chích bông
16 tháng 4 2020 lúc 14:58

sai rồi phải là 96 chứ 96*76:R100= 96 mà

Khách vãng lai đã xóa
Đại gia không tiền
Xem chi tiết
Đặng Quỳnh Anh
Xem chi tiết
công chúa đẹp nhất
26 tháng 6 2017 lúc 10:21

câu a: số tận cùng là 1

câu b: số tận cùng là 2

Hồ Nguyễn Thu Giang
Xem chi tiết
Đỗ Lê Thùy Dung
Xem chi tiết
Đào Minh Hiếu
Xem chi tiết
KCLH Kedokatoji
19 tháng 10 2020 lúc 18:46

Ta có: \(44\equiv2\left(mod7\right)\Rightarrow44^{2005}\equiv2^{2005}\left(mod7\right)\) (*)

Lại có: \(2^3\equiv1\left(mod7\right)\Rightarrow\left(2^3\right)^{668}\equiv1\left(mod7\right)\Rightarrow\left(2^3\right)^{668}.2\equiv2\left(mod7\right)\)

            \(\Leftrightarrow2^{2005}\equiv2\left(mod7\right)\)(**)

Từ (*) và (**) suy ra \(44^{2005}\equiv2\left(mod7\right)\)

Vậy \(44^{2005}\)chia 7 dư 2

Khách vãng lai đã xóa
Đào Minh Hiếu
19 tháng 10 2020 lúc 18:56

bạn có thể giúp mình trả lời 2 câu b và c đk ko

Khách vãng lai đã xóa
Một người bình thường vô...
Xem chi tiết