Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Như
Xem chi tiết
Le Thi Khanh Huyen
2 tháng 9 2016 lúc 19:26

A B C D A' B' C' D' M N P Q E F

Lấy E là trung điểm A'D ; F là trung điểm BC'.

Dễ dàng chứng minh được \(\Delta EQM=\Delta FNP\left(c.g.c\right)\)

Từ đó suy ra \(MQ=NP\)

CMTT có \(MN=PQ\)

Do đó \(MNPQ\)là hình bình hành.

Vậy ...

Tran Thanh Trang
Xem chi tiết
Nguyễn Đức Hiếu
Xem chi tiết
Nhok Cô Đơn
18 tháng 9 2017 lúc 19:29

trả lời hộ mk ?3 hình bình hành

Đỗ Minh Tuệ
Xem chi tiết
Phạm Thị Hường
5 tháng 11 2014 lúc 17:10
(hình bạn tự vẽ nha)CM:gọi giao điểm của hai đường chéo là Omà tứ giác ABCD là hình bình hành(gt)=>\(OA=OC=\frac{1}{2}ACvàOD=OB=\frac{1}{2}BD\)kẻ OO' vuông góc với dta có:OO',AA',BB',CC',DD' vuông góc với d nên OO',AA',BB',CC',DD' song song với nhau

cm OO' là đường trung bình của hình thang BB'D'D=>\(OO'=\frac{BB'+DD'}{2}\left(1\right)\)

chứng minh OO' là đường trung bình của hình thang AA'C'C=>\(OO'=\frac{AA'+CC'}{2}\left(2\right)\)từ (1) và (2)=>\(\frac{AA'+CC'}{2}=\frac{BB'+DD'}{2}\Rightarrow AA'+CC'=BB'+D'D\)

 

 

 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 6 2019 lúc 9:25

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ Ax // (Cz,Dt)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ Ax, AB ⊂ (Ax,By) suy ra (Ax, By) // (Cz, Dt)

Tương tự ta có (Ax, Dt) // (By,Cz)

b)

Giải sách bài tập Toán 11 | Giải sbt Toán 11 Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ (1) và (2) suy ra tứ giác A’B’C’D’ là hình bình hành.

c) Gọi O, O’ lần lượt là tâm các hình bình hành ABCD, A’B’C’D’. Dễ thấy OO’ là đường trung bình của hình thang AA’, suy ra Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tương tự ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Yubi
Xem chi tiết
Nguyễn Như Anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
25 tháng 5 2017 lúc 11:20

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 9 2017 lúc 13:09

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là giao điểm của hai đường chéo AC và BD.

Kẻ OO' ⊥ xy

Ta có: BB' ⊥ xy (gt)

DD' ⊥ xy (gt)

Suy ra: BB // OO' // DD'

Tứ giác BB'D'D là hình thang .

OB = OD (t/chất hình bình hành)

Nên O'B' = O'D'

Do đó OO' là đường trung bình của hình thang BB'D'D

⇒ OO' = (BB' + DD') / 2 (tính chất đường trung hình hình thang) (1)

AA' ⊥ xy (gt)

OO' ⊥ xy (theo cách vẽ)

Suy ra: AA' // OO'

Trong ∆ ACA' tacó: OA = OC (tính chất hình bình hành)

OO' // AA' nên OO' là đường trung bình của  ∆ ACA'

⇒ OO' = 1/2 AA' (tính chất đường trung bình của tam giác)

⇒ AA' = 2OO' (2)

Tử (1) và (2) suy ra: AA' = BB' + DD'

Đào Khoa Nguyên
Xem chi tiết