Tìm n thuộc N sao cho 32n+3 + 24n+1 chia hết cho 25
Chứng minh rằng:
a) 4n +15n - 1 chia hết cho 9
b) 32n+3 - 24n + 37 chia hết cho 64
c) 2n+2 x 3n + 5n -4 chia hết cho 25
bài 1 chứng minh rằng với mọi stn n
a)24n+1+3 chia hết cho 5
b)24n+2 +1 chia hết cho 5
c) 92n+1chia hết cho 10
cảm ơn mọi người nha
a) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
b) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
c) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
1/ Chứng minh rằng với mọi n thuộc N thì 50n + 25 chia hết cho 25 nhưng ko chia hết cho 50
2/ Chứng minh rằng 5 số chẵn liên tiếp thì chia hết cho 10
3/ Tìm n thuộc N
n + 3 chia hết cho n
3n + 3 chia hết cho n
27 - 5n chia hết cho n
Tìm n ϵ Z sao cho:
a) 25 chia hết cho n + 2
b) 2n + 4 chia hết cho n - 1
c) 1 - 4n chia hết cho n + 3
a) \(25⋮n+2\left(n\in Z\right)\)
\(\Rightarrow n+2\in\left\{-1;1;-5;5;-25;25\right\}\)
\(\Rightarrow n\in\left\{-3;-1;-7;3;-27;23\right\}\)
b) \(2n+4⋮n-1\)
\(\Rightarrow2n+4-2\left(n-1\right)⋮n-1\)
\(\Rightarrow2n+4-2n+2⋮n-1\)
\(\Rightarrow6⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-2;4;-5;7\right\}\)
c) \(1-4n⋮n+3\)
\(\Rightarrow1-4n+4\left(n+3\right)⋮n+3\)
\(\Rightarrow1-4n+4n+12⋮n+3\)
\(\Rightarrow13⋮n+3\)
\(\Rightarrow n+3\in\left\{-1;1;-13;13\right\}\)
\(\Rightarrow n\in\left\{-4;-2;-15;10\right\}\)
a) n ϵ{−3;−1;−7;3;−27;23}
b) n ∈{0;2;−1;3;−2;4;−5;7}
c) n ϵ {−4;−2;−15;10}
Chứng minh rằng 22n+2 +24n + 14 chia hết cho 18 ( n thuộc N )
Bài 1:Cho a1,a2,....,a2018 thuộc Z
CMR:a1+a2+...+a2018 chia hết cho 30 khi và chỉ khi a1^5 + a2^5 +...+ a2018^5 chia hết cho 30\
Bài 2: Tìm x,y thuộc N* sao cho x+y+1 chia hết cho xy
Bài 3: tìm x,y thuộc N* sao cho y+1 chia hết cho x, x+1 chia hết cho y
Bài 4:Tìm x,y thuộc N* sao cho y+2 chia hết cho x, x+2 chia hết cho y
Bài 5: Tìm x,y thuộc N* sao cho 2x+1 chia hết cho y, 2y+1 chia hết cho x
Bài 6: CMR: Với mọi n thuộc Z ta có n^5 + 5n chia hết cho 6
Bài 7:CMR: Với mọi n thuộc Z ta có n(2n+7)(7n+1) chia hết cho 6
Giúp mình nhé, cảm ơn các bạn nhiều!!!
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
Chứng minh rằng 22n+2 +24n + 14 chia hết cho 18 ( n thuộc N
Bài này khó quá mình không giải trực tiếp được, thoi đi quy nạp nha:
Với \(n=0\Rightarrow2^{2n+2}+24n+14=18⋮18\)
Với \(n=1\Rightarrow2^{2n+2}+24n+14=54⋮18\)
+) Giả sử giả thiết đúng tới \(n=k,k\inℕ,n>k>2\Rightarrow2^{2k+2}+24k+14⋮18\)
+) Cần chứng minh giả thiết đúng với \(n=k+1:\)
Xét \(2^{2\left(k+1\right)+2}+24\left(k+1\right)+14⋮18\)
\(\Leftrightarrow2^{2+\left(2k+2\right)}+24k+24+14⋮18\)
\(\Leftrightarrow2^2.2^{2k+2}+24k+14+24⋮18\)
\(\Leftrightarrow\left(2^{2k+2}+24k+14\right)+3.2^{2k+2}+24⋮18\)(1)
Vì \(\left(2^{2k+2}+24k+14\right)⋮18\)nên (1)\(\Leftrightarrow3.2^{2k+2}+24⋮18\)(2)
Vì \(3.2^{2k+2}+24⋮6\)nên (2)\(\Leftrightarrow2^{2k+1}+4⋮3\)
Xét \(2^{2k+1}=\left(3-1\right)^{2k+1}\)Vì (2k+1) là số lẻ nên\(\left(3-1\right)^{2k+1}\)có dạng 3A-1 (tức là chia 3 dư 2 đấy !)
(Điều này có thể được chứng minh bằng cách xét số dư khi chia lũy thừa của 2 cho 3, còn để chứng minh chặt chẽ thì đợi lên lớp 11 học nhị thức Newton nha !!)
Vậy (2)\(\Leftrightarrow3A-1+4⋮3\Leftrightarrow3A+3⋮3\)--->đúng \(\forall k,n>k>2\)
Vậy giả thiết đúng \(\forall n\inℕ\)
Chứng minh quy nạp giống bạn Ngọc
.Giả thiêt đúng với n = 0
G/s giả thiết đúng với n
Cần chứng minh giả thiết đúng với n+1
Ta có: \(2^{2\left(n+1\right)+2}+24\left(n+1\right)+14\)
\(=2^{2n+2}.4+24n+24+14\)
\(=\left(2^{2n+2}+24n+14\right)+\left(3.2^{2n+2}+24\right)\)
Vì \(2^{2n+2}+8\equiv\left(-1\right)^{2n+2}+8\equiv9\equiv0\left(mod9\right)\)
\(\Rightarrow3.2^{2n+2}+24⋮9\) và dĩ nhiên là \(3.2^{2n+2}+24⋮2\) mà ( 2; 9) = 1
\(\Rightarrow3.2^{2n+2}+24⋮18\)
Theo điều G/s \(\left(2^{2n+2}+24n+14\right)⋮18\)
=> \(\left(2^{2n+2}+24n+14\right)+\left(3.2^{2n+2}+24\right)⋮18\)
=> \(2^{2\left(n+1\right)+2}+24\left(n+1\right)+14⋮18\)
=> giả thiết đúng với n + 1
Vậy giả thiết đúng với mọi n
1.Tìm n thuộc N biết:
a; n + 3 chia hết cho 7 và n < 50.
b; 16 chia hết cho n - 4.
c; n + 1 chia hết cho 5 và n + 1 chia hết cho 6.
d; 15 chia hết cho 2n -1 và 25 chia hết cho 2n - 1.
Bài 1 : Tìm n thuộc N* sao cho: n^2 + 9n -2 chia hết cho 11.
Bài 2: Tìm x thuộc Z sao cho x^3 - 8x^2 + 2x chia hết cho x^2 +1