Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Ngô Thi
Xem chi tiết
Xem chi tiết
Nguyễn Xuân Nghĩa (Xin...
16 tháng 1 2021 lúc 19:21

a) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5

b) 24n + 2 + 1 = 24n . 2+ 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5

c) 92n+1   + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10

Hok tốt vui

Camerman
15 tháng 7 lúc 10:44

Chỉ voi

Thần Rồng
Xem chi tiết
Phương Linh
Xem chi tiết
Nguyễn Đức Trí
7 tháng 8 2023 lúc 9:02

a) \(25⋮n+2\left(n\in Z\right)\)

\(\Rightarrow n+2\in\left\{-1;1;-5;5;-25;25\right\}\)

\(\Rightarrow n\in\left\{-3;-1;-7;3;-27;23\right\}\)

b) \(2n+4⋮n-1\)

\(\Rightarrow2n+4-2\left(n-1\right)⋮n-1\)

\(\Rightarrow2n+4-2n+2⋮n-1\)

\(\Rightarrow6⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-2;4;-5;7\right\}\)

c) \(1-4n⋮n+3\)

\(\Rightarrow1-4n+4\left(n+3\right)⋮n+3\)

\(\Rightarrow1-4n+4n+12⋮n+3\)

\(\Rightarrow13⋮n+3\)

\(\Rightarrow n+3\in\left\{-1;1;-13;13\right\}\)

\(\Rightarrow n\in\left\{-4;-2;-15;10\right\}\)

Đào Trí Bình
7 tháng 8 2023 lúc 9:15

a) n ϵ{3;1;7;3;27;23}

b) {0;2;1;3;2;4;5;7}

c) n ϵ {4;2;15;10}

Nguyễn Thái Anh
Xem chi tiết
Blue Frost
Xem chi tiết
Đinh quang hiệp
24 tháng 6 2018 lúc 13:53

6   \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)

vì n,n-1 là 2 số nguyên lien tiếp  \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)

  n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)

\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)

7   \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)

\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)

\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)

\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)

\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)

Lê Quang Tuấn Kiệt
24 tháng 6 2018 lúc 12:35

......................?

mik ko biết

mong bn thông cảm 

nha ................

vu anh duc
Xem chi tiết
Khanh Nguyễn Ngọc
9 tháng 9 2020 lúc 9:13

Bài này khó quá mình không giải trực tiếp được, thoi đi quy nạp nha:

Với \(n=0\Rightarrow2^{2n+2}+24n+14=18⋮18\)

Với \(n=1\Rightarrow2^{2n+2}+24n+14=54⋮18\)

+) Giả sử giả thiết đúng tới \(n=k,k\inℕ,n>k>2\Rightarrow2^{2k+2}+24k+14⋮18\)

+) Cần chứng minh giả thiết đúng với \(n=k+1:\)

Xét \(2^{2\left(k+1\right)+2}+24\left(k+1\right)+14⋮18\)

\(\Leftrightarrow2^{2+\left(2k+2\right)}+24k+24+14⋮18\)

\(\Leftrightarrow2^2.2^{2k+2}+24k+14+24⋮18\)

\(\Leftrightarrow\left(2^{2k+2}+24k+14\right)+3.2^{2k+2}+24⋮18\)(1)

Vì \(\left(2^{2k+2}+24k+14\right)⋮18\)nên (1)\(\Leftrightarrow3.2^{2k+2}+24⋮18\)(2)

Vì \(3.2^{2k+2}+24⋮6\)nên (2)\(\Leftrightarrow2^{2k+1}+4⋮3\)

Xét \(2^{2k+1}=\left(3-1\right)^{2k+1}\)Vì (2k+1) là số lẻ nên\(\left(3-1\right)^{2k+1}\)có dạng 3A-1 (tức là chia 3 dư 2 đấy !)

(Điều này có thể được chứng minh bằng cách xét số dư khi chia lũy thừa của 2 cho 3, còn để chứng minh chặt chẽ thì đợi lên lớp 11 học nhị thức Newton nha !!)

Vậy (2)\(\Leftrightarrow3A-1+4⋮3\Leftrightarrow3A+3⋮3\)--->đúng \(\forall k,n>k>2\)

Vậy giả thiết đúng \(\forall n\inℕ\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
9 tháng 9 2020 lúc 11:57

Chứng minh quy nạp giống bạn Ngọc 

.Giả thiêt đúng với n = 0 

G/s giả thiết đúng với n 

Cần chứng minh giả thiết đúng với n+1

Ta có: \(2^{2\left(n+1\right)+2}+24\left(n+1\right)+14\)

\(=2^{2n+2}.4+24n+24+14\)

\(=\left(2^{2n+2}+24n+14\right)+\left(3.2^{2n+2}+24\right)\)

Vì \(2^{2n+2}+8\equiv\left(-1\right)^{2n+2}+8\equiv9\equiv0\left(mod9\right)\)

\(\Rightarrow3.2^{2n+2}+24⋮9\) và dĩ nhiên là \(3.2^{2n+2}+24⋮2\) mà ( 2; 9) = 1

\(\Rightarrow3.2^{2n+2}+24⋮18\)

Theo điều G/s \(\left(2^{2n+2}+24n+14\right)⋮18\)

=> \(\left(2^{2n+2}+24n+14\right)+\left(3.2^{2n+2}+24\right)⋮18\)

=> \(2^{2\left(n+1\right)+2}+24\left(n+1\right)+14⋮18\)

=> giả thiết đúng với n + 1 

Vậy giả thiết đúng với mọi n 

Khách vãng lai đã xóa
Chibi Huyền Mi
Xem chi tiết
Vũ Minh Châu Anh
Xem chi tiết