Không dùng máy tính hoặc bảng số hãy so sánh:
\(\dfrac{1}{2}\) và \(\dfrac{\sqrt{3}-1}{2}\)
Không dùng bảng số hoặc máy tính, hãy so sánh \(\dfrac{1}{\sqrt{3}-\sqrt{2}}\) với \(\sqrt{5}+1\)
Không dùng máy tính hoặc bảng số, hãy so sánh
a, \(\sqrt{8}\) + \(\sqrt{15}\) và \(\sqrt{65}\) -1
b, \(\dfrac{13-2\sqrt{3}}{6}\) và \(\sqrt{2}\)
Lời giải:
a.
$\sqrt{8}+\sqrt{15}+1<\sqrt{9}+\sqrt{16}+1=3+4+1=8=\sqrt{64}< \sqrt{65}$
$\Rightarrow \sqrt{8}+\sqrt{15}< \sqrt{65}-1$
b.
$(2\sqrt{3}+6\sqrt{2})^2=84+24\sqrt{6}< 84+24\sqrt{9}< 169$
$\Rightarrow 2\sqrt{3}+6\sqrt{2}< 13$
$\Rightarrow \frac{13-2\sqrt{3}}{6}> \sqrt{2}$
Không dùng bảng số hoặc máy tính, hãy so sánh:\(\frac{1}{\sqrt{3}-\sqrt{2}}với\sqrt{5}+1\)
Không dùng máy tính so sánh P và Q biết \(P=\dfrac{3+\sqrt{3}}{\sqrt{3}}-\sqrt{\left(\sqrt{3}-1\right)^2}\) và Q=\(\dfrac{1}{\sqrt{2}-1}\)
\(P=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
\(Q=\dfrac{1}{\sqrt{2}-1}=\dfrac{\sqrt{2}+1}{2-1}=\sqrt{2}+1\)
Do \(2< \sqrt{2}+1\)
=> P < Q
So sánh(không dùng bảng số hay máy tính cầm tay)
a)\(\dfrac{1}{7}\sqrt{51}\) với \(\dfrac{1}{9}\sqrt{150}\)
b)\(\sqrt{2017}-\sqrt{2016}\) với \(\sqrt{2016}-\sqrt{2015}\)
b: \(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2016}+\sqrt{2017}}\)
\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
mà \(\sqrt{2016}+\sqrt{2017}< \sqrt{2016}+\sqrt{2015}\)
nên \(\sqrt{2017}-\sqrt{2016}>\sqrt{2016}-\sqrt{2015}\)
Không dùng bảng số hoặc máy tính , hãy so sánh :
\(\sqrt{40+2}và\sqrt{40}+\sqrt{2}\)
Tao nói thật nhé Mày là cái đồ óc chó mất dạy
Không dùng bảng số hoặc máy tính, hãy so sánh 1 3 - 2 với 5 + 1.
- Nhận xét 1 3 - 2 = 3 + 2
- Đặt a = 5 và b = 5 + 1.
- Đưa về so sánh a 2 với b 2 hay 5 + 2 6 với 6 + 2 5
- Đưa về so sánh a 2 – 5 với b 2 – 5 hay so sánh 2 6 với 1 + 2 5
- Đưa về so sánh a 2 - 5 2 với b 2 - 5 2 hay so sánh 24 với 21 + 4 5
- Có thế chứng tỏ được 24 < 21 + 4 5 (vì 3 < 4 5 ⇔ 3 < 80 )
- Từ kết quả 3 < 80 suy luận ngược lại, suy ra 1 3 - 2 < 5 + 1.
Không dùng bảng số hoặc máy tính, hãy so sánh:
\(\sqrt{40+2}\)với \(\sqrt{40}+\sqrt{2}\)
Bình 2 phương \(\sqrt{40+2}\) và \(\sqrt{40}+\sqrt{2}\) đc
\(\sqrt{\left(40+2\right)^2}=42\)
\(\left(\sqrt{40}+\sqrt{2}\right)^2=40+2+2\sqrt{40\cdot2}=42+2\sqrt{80}\)
Ta thấy:\(42+2\sqrt{80}>42\)
\(\Rightarrow\sqrt{40}+\sqrt{2}>\sqrt{40+2}\)
Không dùng bảng số hoặc máy tính , hãy so sánh :
\(\sqrt{42+2}\) và\(\sqrt{40}+\sqrt{2}\)
Dễ
Bình phương cả 2 vế ta đc
42+2 và 40+2+2.\(4\sqrt{5}\)
42+2 và 42+2.\(4\sqrt{5}\)
Ta thấy \(4\sqrt{5}\) >2
Suy ra 42+2<42+2.\(4\sqrt{5}\)
=>\(\sqrt{42+2}
Ta có:\(\left(\sqrt{42+2}\right)^2=44\)(1)
\(\left(\sqrt{40}+\sqrt{2}\right)^2=44+2\sqrt{80}\)(2)
Do (1)<(2)
=>\(\sqrt{42+2}
5a)
(sqrt(40 + 2))^2 = 40 + 2
(sqrt(40) + sqrt(2))^2 = 40 + 2 + 2*sqrt(40)*sqrt(2)
=> sqrt(40 + 2) < sqrt(40) + sqrt(2)
Không dùng bảng số hoặc máy tính, hãy so sánh :
\(\sqrt{40+2}\) và \(\sqrt{40}+\sqrt{2}\)
\(\sqrt{40+2}=\sqrt{42}< \sqrt{49}=7.\) (1)
\(\sqrt{40}+\sqrt{2}>\sqrt{36}+\sqrt{1}=6+1=7.\) (2)
Từ (1) và (2) suy ra \(\sqrt{40+2}< \sqrt{40}+\sqrt{2}.\)