Cho tam giác ABC vuông tại A có M di chuyển trên BC. T,Q là hình chiếu của M trên AB,AC.
a. Tìm quỹ tích trung điểm I của TQ
b. Chứng minh: TQ đi qua 1 điểm cố định F
c. Gọi H,K là hình chiếu của F trên TQ,AB. Tìm quỹ tích điểm H
Giả sử M nằm giữa B and D
a) tam giác IED có:
\(\hept{\begin{cases}IE=ID=\frac{1}{2}AM\\\widehat{EID}=2.\widehat{BAD}=60^0\end{cases}}\)
=> TAM GIÁC IED là tam giác đều (1)Chứng minh tương tự ta được tam giác IFD là tam giác đều (2).
Từ (1) và (2) suy ra DEIF là hình thoi.
b) Vìtam giác ABC đều nên trực tâm H củng là trọng tâm. Suy ra:AH = 2.HDGọi P là trung điểm của AH=> AP = PH = HD. Suy ra IP, KH thứ tự là đường trung bình của các tam giác AMH và DIP=> MH // IP và KH // IP,
=> M , K , H thẳng hàng
c)
Vì tam giac EDK vuông tại K nên ta có: EF =2.EK = 2. ED.sinKDE =\(\sqrt{3}\).DE do đó EF đạt GTNN
=>DE đạt GTNN => \(DE\perp AB=>M\)trùng zs D ( Có thể dùng đ.lý pitago để tính EF theo DE ).
d) ta có diện tích DEIF=\(\frac{1}{2}DI.EF\)theo DE
e)e) Tìm quỹ tích của K thông qua quỹ tích của I.
bài này dài lắm . nên gợi ý như thế thôi . cần hỏi chỗ nào ib riêng cho mình ^^
Kẻ IN, DM song song với BC
suy ra IN song song vs DM
Tam giác EDM có Itrung điểm DE và IN song song vs DM
suy ra In là đương trung binh của tam giác EDM
suy ra N là trung điểm Em
ta có DM song song với BC suy ra DMCB là hình thang
Mà góc ABC =ACB
nên DMCB là hình thang cân
suy ra DB =MC
ta lại có DB=AE
suy ra MC =AE
suy ra AE+EN=CM+MN
vậy AN=NC
VẬY N là trung điểm AC
Tam giác ACK có N là trung điểm AC và IN song song với BC
suy ra IN là đường trung bình tam giác AKB
suy ra I la trung điểm AK
tứ giác ADKE có I là trung điểm DE và I trung điểm AK
nêm ADKE là hình bình hành vì có hai đường chéo cắt nhau tại trung điểm mỗi đường