Cho tam giác ABC vuông tại A. Chứng minh rằng: AB + AC \(\le\) \(\sqrt{2}\) BC
Cho tam giác ABC vuông tại A, AB < AC. Đường trung trực của đoạn thẳng BC cắt BC tại I, cắt AC tại H và cắt AB tại D.
1) Chứng minh rằng tam giác DBC là tam giác cân
2) Chứng minh rằng BH vuông góc với DC
3) Chứng minh rằng AH<BC
a) vì DI là đường trung trực của BC
suy ra {DI vuông góc vs BC tại I
{góc DIB = góc DIC=90độ IB=IC( gt)
xét tam giác DIB và tam giác DIC có
IB=IC(gt)
góc DIB=góc DIC=90độ
ADI là cạnh chung
suy ra tam giác DIB = tam giác DIC (c.g.c)
suy ra DC=DB (2 cạnh tương ứng )
xét tam giác ABC có : DC=DB(chứng minh trên)
suy ra tam giác DBC cân tại D
Cho tam giác ABC vuông tại A, AB < AC. Đường trung trực của đoạn thẳng BC cắt BC tại I, cắt AC tại H và cắt AB tại D.
1) Chứng minh rằng tam giác DBC là tam giác cân
2) Chứng minh rằng BH vuông góc với DC
3) Chứng minh rằng AH<BC
Cho tam giác ABC vuông tại A, BC =a ; CA=b; AB =c ; r là bán kính đường tròn nội tiếp tam giác ABC . Chứng minh rằng :
\(\frac{r}{a}\le\frac{\sqrt{2}-1}{2}\)
Cho tam giác ABC vuông tại A (AB < AC), BD là đường phân giác. Vẽ DE vuông góc với BC tại E.
a) Cho biết AB = 6cm, AC = 8cm. Tính BC.
b) Chứng minh tam giác DAE cân.
c) Chứng minh rằng DA < DC.
d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy.
Cho tam giác ABC vuông tại A đường cao AH chứng minh rằng a. Tam giác ABC đồng dạng với tam giác AC b. AB. AC = AH. BC c. 1/Ah^2 = 1/AB^2 + 1/AC^2
a) Xét tam giác ABC và tam giác HAC có:
BAC = AHC =90
ABC = HAC (cùng phụ với HAB)
=> ABC đồng dạng HAC (g.g)
b) Vì ABC đồng dạng HAC
=> AB/BC = AH/AC
=> AB.AC=BC.AH
c) Vì AB.AC = BC.AH
=> AB^2.AC^2= BC^2 . AH^2
Mà BC^2=AB^2+AC^2 (định lý pytago ở tam giác ABC vuông tại A)
=> AB^2.AC^2= (AB^2+AC)^2.AH^2
=> 1/AH^2 =1/AB^2 +1/AC^2
Cho tam giác ABC vuông tại A có AB = AC Gọi I là trung điểm của BC D là trung điểm của AC a chứng minh tam giác amb bằng tam giác ABC và AE vuông góc với BC b từ A kẻ đường thẳng vuông góc với BD cắt BC tại D trên tia đối của tia de lấy điểm F sao cho de = AB Chứng minh rằng tam giác ADM bằng C D E Từ đó suy ra AE = AB song song với CD e từ C kẻ đường thẳng vuông góc với AC cắt tại g Chứng minh tam giác ABD bằng tam giác ABC Chứng minh rằng AB = ACG
Bài 1: Cho tam giác ABC vuông tại A (AB < AC), BD là đường phân giác. Vẽ DE ⊥ BC tại E
a) Cho biết AB=9 cm, AC = 12cm, Tính BCb
b) Chứng minh tam giác DAE cân
c) Chứng minh rằng DA < DC
d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy
Bài 2:
cho tam giác ABC vuông tại A ( AB<AC ) , BM là đường trung tuyến của tam giác ABC .
Trên tia đối của tia MB lấy điểm D sao cho MD=MB
a) cho biết AC = 8cm , BC = 10cm . Tính AB
b) Chứng minh : AB = CD , AC vuông góc CD
c) Chứng minh : AB + BC > 2BM
d) chứng minh : góc CBM < góc ABM
Bài 1: Cho tam giác ABC vuông tại A (AB < AC), BD là đường phân giác. Vẽ DE ⊥ BC tại E
a) Cho biết AB=9 cm, AC = 12cm, Tính BCb
b) Chứng minh tam giác DAE cân
c) Chứng minh rằng DA < DC
d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy
Bài 2:
cho tam giác ABC vuông tại A ( AB<AC ) , BM là đường trung tuyến của tam giác ABC .
Trên tia đối của tia MB lấy điểm D sao cho MD=MB
a) cho biết AC = 8cm , BC = 10cm . Tính AB
b) Chứng minh : AB = CD , AC vuông góc CD
c) Chứng minh : AB + BC > 2BM
d) chứng minh : góc CBM < góc ABM
Bài 1 : Bài giải
a, Trong \(\Delta ABC\) vuông tại A có :
\(AB^2+AC^2=BC^2\text{ }\Rightarrow\text{ }9^2+12^2=81+144=225=BC^2\text{ }\Rightarrow\text{ }BC=5\text{ }cm\)
b, Vì BD là đường phân giác \(\widehat{ABC}\) nên : \(\widehat{B_1}=\widehat{B_2}\)
Xét 2 tam giác \(\Delta ABD\) vuông tại A và \(\Delta AED\) vuông tại E có :
\(BD\) : cạnh huyền - cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) ( cmt )
\(\Rightarrow\text{ }\Delta ABD=\Delta AED\text{ }\left(ch-gn\right)\)
\(\Rightarrow\text{ }AD=DE\text{ }\left(2\text{ cạnh tương ứng }\right)\)
\(\Rightarrow\text{ }\Delta DAE\text{ cân }\)
c, Trong \(\Delta DEC\text{ }\) vuông tại E có : DC là cạnh đối diện với \(\widehat{E}\) nên \(DC\) là cạnh có độ dài lớn nhất \(\Rightarrow\text{ }DE< DC\)
Mà \(DA=DE\text{ nên }DA< DC\)
d, Vì \(\hept{\begin{cases}DE\text{ }\perp\text{ }BC\\BF\text{ }\perp\text{ }CF\\AB\text{ }\perp\text{ }AC\end{cases}}\text{ }\Rightarrow\text{ }DE\text{ , }AB\text{ và }BF\text{ là đường cao của }\Delta OBC\)
\(\Rightarrow\text{ }AB\text{, }DE\text{ và }CF\text{ đồng quy tại 1 điểm}\)
cho tam giác ABC Vuông tại A ( AB < AC)
a) Cho biết AB = 9cm , AC =12 cm . Tính BC
b) BD là Phân giác của góc B ( D thuộc AC ) . Vẽ DE vuông góc BC tại e. Chứng minh tam giác ABD = tam giác EDB
c) Chứng minh rằng DA <DC
a, Áp dụng Đ. L. Py-ta-go vào tg ABC vuông tại A, có:
BC2=AB2+AC2
=>BC2=92+122=81+144=225.
=>BC=15(cm)
b, Xét tg ABD và tg EBD, có:
góc ABD= góc DBE(tia phân giác)
BD chung.
góc A= góc E(=90o)
=>tg ABD= tg EBD(ch-gn)
1.cho tam giác ABC (AB<AC) .Vẽ BD vuông góc với AC và CE vuông góc với AB tại E . Chứng minh rằng AB - AD>BD - CE
2.cho tam giác ABC(AB>AC) , vẽ BD vuông góc với AC tại D và CE vuông góc với AB tại E . Chứng minh rằng : AB - AD > BD -CE
3.cho tam giác ABC cân tại A , trên 2 cạnh AB AB và AC lấy 2 điểm M và N sao cho AM =AN . Chứng minh rằng
a)Các hình chiếu của BM và CN trên BC bằng nhau
b) BN > (BC+MN)/2
bài 3 giải giúp mik câu b thoy
3b)
Ta có tg BNK vuông tại K ->BN>BK
Ta có IK=MN(tính chất đoạn chắn)
Ta có : BC+MN=BK+KC+MN=BK+BI+IK=2BK
Vì BK<BN->2BK<2BN->BN>BK/2->BN>BC+MN/2