cho tam giác ABC , trung tuyến AM . Trên tia đối của MA lấy điểm D bất kì . biết AB<AC
cm CD và BD
Cho tam giác ABC có AB < AC. Gọi M là trung điểm của cạnh BC, (đoạn thẳng AM đc gọi là đường trung tuyến của tam giác ABC). Lấy điểm I bất kỳ trên đường trung tuyến AM. Trên tia đối của tia MA lấy E sao cho ME = MI. So sánh tam giác BMI và tam giác MEC.
Giúp mk vs huhuhu
Xét \(\Delta BMI\)và \(\Delta CME\)có:
\(BM=CM\left(gt\right)\)
\(\widehat{BMI}=\widehat{CME}\) (đối đỉnh)
\(MI=ME\left(gt\right)\)
Do đó: \(\Delta BMI=\Delta CME\left(c.g.c\right)\)
Trong 2 tam giác bằng nhau, bạn phải viết đỉnh tương ứng thì mới đúng.
Chúc bạn học tốt.
Cho tam giác ABC,M là trung điểm của BC.Gọi E là một điểm bất kì trên đoạn AM ,tren tia đối của MA lấy điểm D sao cho MD=ME.Chứng minh CE vuông góc với AB
cho tam giác ABC có AB<AC. Gọi M là trung điểm của cạnh BC,( đoạn thẳng Amm được gọi là đường trung tuyến của tam giác ABC).Lấy điểm I bất kỳ trên đường trung tuyến AM. Trên tia đối của MA lấy E sao cho ME=MI. So sánh tam giác BMI và tam giác MEC
Cho tam giác ABC vuông tại A, trung tuyến AM. Biết AB = 6cm, AC = 8cm.
a) Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh ∆ A M B = ∆ D M C .
b) Chứng minh ∆ B A C = ∆ D C A .
c) Tính AM.
d) Chứng minh A M < A B + A C 2 .
Cho tam giác AbC có ab=ac M là trung điểm của BC trên tia đối của tia MA lấy điểm D sao cho am=mb chứng minh rằng a/ tam giác Abc=Amc B/ trên tia đối của tia ma lấy điểm D sao cho am=md ,CM, tam giác mba=mcd
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét ΔMBA và ΔMCD có
MB=MC
\(\widehat{AMB}=\widehat{DMC}\)
MA=MD
Do đó: ΔMBA=ΔMCD
Cho tam giác ABC vuông tại A, ABC > ACB, trung tuyến AM . Trên tia đố của tia CB lấy điểm D sao cho C là trung điểm của MD . Trên tia đối của tia BA lấy điểm E sao cho BE=BA Trên tia đối của tia MA lấy điểm N sao cho
MN=MA.
a) Chứng minh tam giác AMB bằng tam giác NMC và NC vuông góc với AC ;
b) Gọi I là trung điểm của DE . Chứng minh ba điểm A, M, I thẳng hàng
c*) So sánh AD và BC.
a/
Xét tg AMB và tg MNC có
MB=MC (giả thiết)
MA=MN (giả thiết)
\(\widehat{AMB}=\widehat{NMC}\) (góc đối đỉnh)
=> tg AMB = tg NMC (c.g.c)
b/ Nối A với I cắt BD tại M'
Xét tg ADE có
BE=BA (gt) => DE là trung tuyến của tg ADE
IE=ID (gt) => AI là trung tuyến của tg ADE
=> M' là trọng tâm của tg ADE => \(BM'=\dfrac{1}{3}BD\) (1)
Ta có
MB=MC (gt); MC=CD (gt) => MB=MC=CD
BD=MB+MC+CD
=> \(BM=\dfrac{1}{3}BD\) (2)
Từ (1) và (2) => \(M'\equiv M\)
=> A; M; I thẳng hàng
Cho tam giác nhọn ABC. Đường trung tuyến AM (M Î BC). Trên tia đối của tia MA lấy điểm D sao cho MA = MD a) Chứng minh DMAB = DMDC. b) Chứng minh CD // AB. c) Kẻ đường trung tuyến BN (N Î AC). Trên tia đối của tia NB lấy điểm E sao cho NB = NE. Chứng minh ba điểm E, C, D thẳng hàng.gấp ạ,giúp m voi.
a: Xet ΔMAB và ΔMDC có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔMAB=ΔMDC
b: ΔMAB=ΔMDC
=>góc MAB=góc MDC
=>AB//CD
c: Xét tứ giác ABCE có
N là trung điểm chung của AC và BE
=>ABCE là hình bình hành
=>AB//EC
=>C,E,D thẳng hàng
Cho tam giác ABC vuông tại A , trung tuyến AM . Trên tia đối của tia MA , lấy điểm D sao cho MD=MA .Cho AB=5cm; AC=12cm . Tính AM và diện tích tam giác ABC.Chứng minh tứ giác ABDC là hình chữ nhật.Gọi H là điểm đối xứng với M qua AB, K là điểm đối xứng với M qua AC . Chứng minh H đối xứng với K qua A
Cho tam giác ABC vuông tại A , trung tuyến AM . Trên tia đối của tia MA , lấy điểm D sao cho MD=MA .Cho AB=5cm; AC=12cm . Tính AM và diện tích tam giác ABC.Chứng minh tứ giác ABDC là hình chữ nhật.Gọi H là điểm đối xứng với M qua AB, K là điểm đối xứng với M qua AC . Chứng minh H đối xứng với K qua A
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
mà AD=BC
nên ABDC là hình chữ nhật
Cho tam giác ABC vuông tại A , trung tuyến AM . Trên tia đối của tia MA , lấy điểm D sao cho MD=MA .Cho AB=5cm; AC=12cm . Tính AM và diện tích tam giác ABC.Chứng minh tứ giác ABDC là hình chữ nhật.Gọi H là điểm đối xứng với M qua AB, K là điểm đối xứng với M qua AC . Chứng minh H đối xứng với K qua A
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà AD=BC
nên ABDC là hình chữ nhật