Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thu Hiền
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 7 2021 lúc 21:58

a.

ĐKXĐ: \(-1\le x\le1\)

Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)

\(x^2=1-t^2\Rightarrow x^4=t^4-2t^2+1\)

Pt trở thành:

\(729\left(t^4-2t^2+1\right)+8t=36\)

\(\Leftrightarrow729t^4-1458t^2+8t+693=0\)

\(\Leftrightarrow\left(9t^2+2t-9\right)\left(81t^2-18t-77\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}9t^2+2t-9=0\\81t^2-18t-77=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{\sqrt{82}-1}{9}\\t=\dfrac{1+\sqrt{78}}{9}\end{matrix}\right.\)

\(\Rightarrow x=\pm\sqrt{1-t^2}=...\)

Nguyễn Việt Lâm
21 tháng 7 2021 lúc 21:59

b.

ĐKXĐ: ...

\(-3\left(10+4x-x^2\right)-5\sqrt{10+4x-x^2}+42=0\)

Đặt \(\sqrt{10+4x-x^2}=t\ge0\)

\(\Rightarrow-3t^2-5t+42=0\)

\(\Rightarrow\left[{}\begin{matrix}t=3\\t=-\dfrac{14}{3}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{10+4x-x^2}=3\)

\(\Leftrightarrow x^2-4x-1=0\)

\(\Leftrightarrow x=...\)

Phúc Nguyễn
Xem chi tiết
Thắng Nguyễn
25 tháng 7 2017 lúc 22:50

a)\(x^2+x+12\sqrt{x+1}=36\)

\(pt\Leftrightarrow x^2+x-12+12\sqrt{x+1}-24=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\frac{144\left(x+1\right)-576}{12\sqrt{x+1}+24}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\frac{144\left(x-3\right)}{12\sqrt{x+1}+24}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4+\frac{144}{12\sqrt{x+1}+24}\right)=0\)

Dễ thấy: \(x+4+\frac{144}{12\sqrt{x+1}+24}>0\forall x\ge-1\)

\(\Rightarrow x-3=0\Rightarrow x=3\)

b)\(x+\sqrt{x-2}=2\sqrt{x-1}\)

\(pt\Leftrightarrow x-2+\sqrt{x-2}=2\sqrt{x-1}-2\)

\(\Leftrightarrow x-2+\frac{x-2}{\sqrt{x-2}}=2\left(\sqrt{x-1}-1\right)\)

\(\Leftrightarrow x-2+\frac{x-2}{\sqrt{x-2}}-2\cdot\frac{x-1-1}{\sqrt{x-1}+1}=0\)

\(\Leftrightarrow x-2+\frac{x-2}{\sqrt{x-2}}-2\cdot\frac{x-2}{\sqrt{x-1}+1}=0\)

\(\Leftrightarrow\left(x-2\right)\left(1+\frac{1}{\sqrt{x-2}}-\frac{2}{\sqrt{x-1}+1}\right)=0\)

Suy ra x-2=0=>x=2

c)Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) ta có:

\(VT=\sqrt{x+3}+\sqrt{1-x}\)

\(\ge\sqrt{x+3+1-x}=\sqrt{4}=2=VP\)

Xảy ra khi \(\orbr{\begin{cases}x=-3\\x=1\end{cases}}\)

KAl(SO4)2·12H2O
9 tháng 7 2018 lúc 20:23

1) ĐK: \(x\ge-1\)

\(PT\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12.\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\Leftrightarrow x=3\text{ hoặc }\frac{12}{\sqrt{x+1}+2}+x+4=0\) (*)

VT của (*) luôn dương với \(x\ge-1\)

=> x = 3

Lê Hà Vy
Xem chi tiết
Hung nguyen
17 tháng 8 2017 lúc 8:45

b/ \(\sqrt{12-\dfrac{12}{x^2}}+\sqrt{x^2-\dfrac{12}{x^2}}=x^2\)

\(\Leftrightarrow x-\sqrt{12-\dfrac{12}{x^2}}=\sqrt{x^2-\dfrac{12}{x^2}}\)

Bình phương 2 vế rút gọn

\(\Leftrightarrow x^4-x^2-4\sqrt{3\left(x^4-x^2\right)}+12=0\)

Đặt \(\sqrt{x^4-x^2}=a\)

\(\Rightarrow a^2-4\sqrt{3}a+12=0\)

\(\Leftrightarrow a=2\sqrt{3}\)

\(\Leftrightarrow x^4-x^2=12\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Hung nguyen
17 tháng 8 2017 lúc 9:04

Câu a xem lại đề đúng không b. Do nghiệm xấu lắm

Phạm Tú Anh
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
ChrisCivil Gaming
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 4 2021 lúc 21:55

a.

ĐKXĐ: \(1\le x\le7\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
8 tháng 4 2021 lúc 22:01

b. ĐKXĐ: ...

Biến đổi pt đầu:

\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a^2b^2-b^4=b-a\)

\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)

Thế vào pt dưới:

\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)

\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)

\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)

\(\Leftrightarrow...\)

Mai Thị Thúy
Xem chi tiết