Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phuong anh do
Xem chi tiết
Đào Mạnh Tuyên
Xem chi tiết
Đào Mạnh Tuyên
Xem chi tiết
Đào Mạnh Tuyên
Xem chi tiết
nguyễn văn nhật nam
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2021 lúc 15:15

Tất cả các câu này đều có thể chứng minh bằng phép biến đổi tương đương:

a.

\(\Leftrightarrow a^{10}+b^{10}+a^4b^6+a^6b^4\le2a^{10}+2b^{10}\)

\(\Leftrightarrow a^{10}-a^6b^4+b^{10}-a^4b^6\ge0\)

\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)

\(\Leftrightarrow\left(a^6-b^6\right)\left(a^4-b^4\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^2+b^2\right)\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

b.

\(\Leftrightarrow\left(\dfrac{a^2}{4}+b^2+c^2-ab+ac-2bc\right)+b^2-2b+1+c^2\ge0\)

\(\Leftrightarrow\left(\dfrac{a}{2}-b+c\right)^2+\left(b-1\right)^2+c^2\ge0\) (luôn đúng)

Nguyễn Việt Lâm
22 tháng 3 2021 lúc 15:17

c.

\(\Leftrightarrow a^2+4b^2+4c^2-4ab-8bc+4ac\ge0\)

\(\Leftrightarrow\left(a-2b+2c\right)^2\ge0\) (luôn đúng)

d.

\(\Leftrightarrow4a^4-8a^3+4a^2+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(2a^2-2a\right)^2+\left(a-1\right)^2\ge0\) (luôn đúng)

Me. Choose
Xem chi tiết
Anh Quynh
Xem chi tiết
An Thy
30 tháng 7 2021 lúc 15:58

\(E=\dfrac{1}{2a-1}\sqrt{5a^4\left(1-4a+4a^2\right)}\left(a\ne\dfrac{1}{2}\right)\)

\(=\dfrac{1}{2a-1}\sqrt{5\left(a^2\right)^2\left(1-2a\right)^2}=\dfrac{1}{2a-1}\sqrt{5}.a^2.\left|1-2a\right|\)

Xét \(a>\dfrac{1}{2}\Rightarrow1-2a< 0\Rightarrow\dfrac{1}{2a-1}\sqrt{5}.a^2.\left|1-2a\right|\)

\(=\dfrac{1}{2a-1}\sqrt{5}.a^2.\left(2a-1\right)=\sqrt{5}a^2\)

Xét \(a< \dfrac{1}{2}\Rightarrow1-2a>0\Rightarrow\dfrac{1}{2a-1}\sqrt{5}.a^2.\left|1-2a\right|\)

\(=\dfrac{1}{2a-1}\sqrt{5}.a^2.\left(1-2a\right)=-\sqrt{5}a^2\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 15:59

\(E=\dfrac{1}{2a-1}\sqrt{5a^4\left(2a-1\right)^2}=\dfrac{a^2.\left|2a-1\right|.\sqrt{5}}{2a-1}\)

- Với \(2a-1>0\Rightarrow a>\dfrac{1}{2}\) thì \(E=\dfrac{a^2\left(2a-1\right).\sqrt{5}}{2a-1}=a^2\sqrt{5}\)

- Với \(a< \dfrac{1}{2}\) thì \(E=\dfrac{-a^2.\left(2a-1\right).\sqrt{5}}{2a-1}=-a^2\sqrt{5}\)

Nguyễn Lê Phước Thịnh
31 tháng 7 2021 lúc 0:57

Ta có: \(E=\dfrac{1}{2a-1}\cdot\sqrt{5a^4\cdot\left(4a^2-4a+1\right)}\)

\(=\dfrac{1}{2a-1}\cdot\dfrac{a^2\cdot\sqrt{5}\cdot\left(2a-1\right)}{1}\)

\(=a^2\sqrt{5}\)

Thảo Lê
Xem chi tiết
headsot96
14 tháng 7 2019 lúc 18:36

1. \(x^3-x+\frac{1}{2}=x^4-x^2+\frac{1}{4}+x^2-x+\frac{1}{4}=\left(x^2-\frac{1}{2}\right)^2+\left(x-\frac{1}{2}\right)^2\ge0\)

Nếu  \(\left(x^2-\frac{1}{2}\right)^2+\left(x-\frac{1}{2}\right)^2=0\)thì \(\hept{\begin{cases}x-\frac{1}{2}=0\\x^2-\frac{1}{2}=0\end{cases}=>\hept{\begin{cases}x=\frac{1}{2}\\x^2=\frac{1}{2}\end{cases}}}\)(VÔ LÍ)

Vậy \(x^4-x+\frac{1}{2}>0\)

tth_new
15 tháng 7 2019 lúc 8:11

2/ \(BT=a^2\left(4a^2-4a+5\right)-2a+1\)

\(=\left(2a-1\right)^2.a^2+\left(4a^2-2a+1\right)\)

\(=\left(2a^2-a\right)^2+\left(2a-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Big City Boy
Xem chi tiết