Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sengoku
Xem chi tiết
Pham Hong Quan
Xem chi tiết
Akai Haruma
15 tháng 9 lúc 0:09

Lời giải:

Với $x,y,z\in\mathbb{N}^*$ ta có:

$\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}> \frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1(1)$

Lại có:

Xét hiệu: $\frac{x}{x+y}-\frac{x+z}{x+y+z}=\frac{-yz}{(x+y)(x+y+z)}<0$ với mọi $x,y,z\in\mathbb{N}^*$

$\Rightarrow \frac{x}{x+y}< \frac{x+z}{x+y+z}$

Hoàn toàn tương tự ta có:

$\frac{y}{y+z}< \frac{y+x}{x+y+z}$

$\frac{z}{x+z}< \frac{z+y}{x+y+z}$

Cộng theo vế ta được:

$\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}< \frac{x+z}{x+y+z}+\frac{x+y}{x+y+z}+\frac{y+z}{x+y+z}=\frac{2(x+y+z)}{x+y+z}=2(2)$

Từ $(1); (2)$ ta có đpcm.

Akai Haruma
15 tháng 9 lúc 0:09

Lời giải:

Với $x,y,z\in\mathbb{N}^*$ ta có:

$\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}> \frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1(1)$

Lại có:

Xét hiệu: $\frac{x}{x+y}-\frac{x+z}{x+y+z}=\frac{-yz}{(x+y)(x+y+z)}<0$ với mọi $x,y,z\in\mathbb{N}^*$

$\Rightarrow \frac{x}{x+y}< \frac{x+z}{x+y+z}$

Hoàn toàn tương tự ta có:

$\frac{y}{y+z}< \frac{y+x}{x+y+z}$

$\frac{z}{x+z}< \frac{z+y}{x+y+z}$

Cộng theo vế ta được:

$\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}< \frac{x+z}{x+y+z}+\frac{x+y}{x+y+z}+\frac{y+z}{x+y+z}=\frac{2(x+y+z)}{x+y+z}=2(2)$

Từ $(1); (2)$ ta có đpcm.

hungdung
Xem chi tiết
Lightning Farron
11 tháng 12 2016 lúc 10:37

Ta có:

\(\frac{x}{x+1}=1-\frac{1}{x+1}\)

\(\frac{y}{y+1}=1-\frac{y}{y+1}\)

\(\frac{z}{z+4}=1-\frac{4}{z+4}\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)

\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)

 

 

 

Ngô Lan Chi
Xem chi tiết
Đào Trọng Luân
Xem chi tiết
Steolla
2 tháng 9 2017 lúc 12:21

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Tiểu Sam Sam
Xem chi tiết
pham trung thanh
10 tháng 12 2017 lúc 20:15

Ta co: \(\hept{\begin{cases}x^2-y+\frac{1}{4}=0\\y^2-x+\frac{1}{4}=0\end{cases}}\)

\(\Rightarrow x^2-x+\frac{1}{4}+y^2-y+\frac{1}{4}=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow x=y=\frac{1}{2}}\)

Vậy \(x=y=\frac{1}{2}\)

Nhok_baobinh
10 tháng 12 2017 lúc 21:12

Ta có: \(\hept{\begin{cases}x^2-y+\frac{1}{4}=0\\y^2-x+\frac{1}{4}=0\end{cases}}\)

\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow x=y=\frac{1}{2}}\)

Vậy \(x=y=\frac{1}{2}\)

Hoàn Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2023 lúc 22:43

=>\(\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)

=>x^2+2xy+y^2-4xy>=0

=>(x-y)^2>=0(luôn đúng)

Bình Thiên
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
ctk_new
23 tháng 9 2019 lúc 12:40

Đặt \(x=\sqrt{10}sin^2a\)\(y=\sqrt{10}cos^2a\)

(Lúc đó: \(x+y=\sqrt{10}\left(sin^2a+cos^2a\right)=\sqrt{10}\))

Lúc đó: \(K=\left(1+100sin^8a\right)\left(1+100cos^8a\right)\)

\(=10^4sin^8acos^8a+200sin^4acos^4a-400sin^2acos^2a+101\)

Đặt \(sin^2acos^2a=l\)

\(\Rightarrow K=f\left(l\right)=10^4l^4+200l^2-400l+101\)

\(\Rightarrow K_{min}=f\left(\frac{1}{5}\right)=45\)

 .
23 tháng 9 2019 lúc 12:42

Tìm GTLN và GTNN của biểu thức $A=(x^{4}+1)(y^{4}+1)$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

Nguyễn Linh Chi
23 tháng 9 2019 lúc 13:54

@ ctk @ Cách hay! :))). Tham khảo thêm cách này nhé!

 \(K=x^4y^4+x^4+y^4+1\)

Ta có: \(x+y=\sqrt{10}\Leftrightarrow\left(x+y\right)^2=10\)

\(\Leftrightarrow x^2+y^2=10-2xy\)

\(\Leftrightarrow\left(x^2+y^2\right)^2=\left(10-2xy\right)^2\)

\(\Leftrightarrow x^4+y^4=100-40xy+2x^2y^2\)

Khi đó: \(K=x^4y^4+2x^2y^2-40xy+101=\left(xy\right)^4-8x^2y^2+10x^2y^2-40xy+101\)

\(=\left(x^2y^2\right)^2-2.x^2y^2.4+16+10\left(x^2y^2-4xy+4\right)+45\)

\(=\left(x^2y^2-4\right)^2+10\left(xy-2\right)^2+45\ge45\)

"=" xảy ra <=> \(\hept{\begin{cases}xy=4\\x+y=\sqrt{10}\end{cases}}\). Em tự giải tìm x, y nhé!