\(\sqrt{23+12\sqrt{6}}-\sqrt{23-12\sqrt{6}}\)
Tính:
a)\(\sqrt{28-16\sqrt{3}}\)
b)\(\sqrt{29-12\sqrt{5}}\)
c)\(\sqrt{23-\sqrt{240}}\)
d)\(\sqrt{33-12\sqrt{6}}\)
a)\(\sqrt{28-16\sqrt{3}}=\sqrt{12-2.4.2\sqrt{3}+16}=\sqrt{\left(2\sqrt{3}\right)^2-2.4.2\sqrt{3}+4^2}=\sqrt{\left(2\sqrt{3}-4\right)^2}\)\(=\left|2\sqrt{3}-4\right|=4-2\sqrt{3}\)
b) \(\sqrt{29-12\sqrt{5}}=\sqrt{3^2-2.3.2\sqrt{5}+\left(2\sqrt{5}\right)^2}=\sqrt{\left(3-2\sqrt{5}\right)^2}=2\sqrt{5}-3\)
c)\(\sqrt{23-\sqrt{240}}=\sqrt{23-4\sqrt{15}}=\sqrt{\left(2\sqrt{5}\right)^2-2.\sqrt{3}.2\sqrt{5}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(2\sqrt{5}-\sqrt{3}\right)^2}=2\sqrt{5}-\sqrt{3}\)
d)\(\sqrt{33-12\sqrt{6}}=\sqrt{\left(2\sqrt{6}\right)^2-2.3.2\sqrt{6}+3^2}=\sqrt{\left(2\sqrt{6}-3\right)^2}=2\sqrt{6}-3\)
Trả lời:
a)\(\sqrt{28-16\sqrt{3}}\)
\(=\sqrt{16-16\sqrt{3}+12}\)
\(=\sqrt{\left(4-2\sqrt{3}\right)^2}\)
\(=4-2\sqrt{3}\)
b) \(\sqrt{29-12\sqrt{5}}\)
\(=\sqrt{20-12\sqrt{5}+9}\)
\(=\sqrt{\left(2\sqrt{5}-3\right)^2}\)
\(=2\sqrt{5}-3\)
c) \(\sqrt{23-\sqrt{240}}\)
\(=\sqrt{23-4\sqrt{15}}\)
\(=\sqrt{20-4\sqrt{15}+3}\)
\(=\sqrt{\left(2\sqrt{5}-\sqrt{3}\right)^2}\)
\(=2\sqrt{5}-\sqrt{3}\)
d) \(\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{24-12\sqrt{6}+9}\)
\(=\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=2\sqrt{6}-3\)
Thực hiện phép tính:
a)\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
b)\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}\)
c)\(\sqrt{48-6\sqrt{15}}-\sqrt{72-18\sqrt{15}}\)
d)\(\sqrt{29-6\sqrt{20}}+\sqrt{14+3\sqrt{20}}\)
Rút gọn biểu thức
a. A = \(\sqrt{11-6\sqrt{2}}+3+\sqrt{2}\)
b. B = \(\sqrt{29-4\sqrt{7}}+\sqrt{23+8\sqrt{7}}\)
c. C = \(\sqrt{12+2\sqrt{11}+\sqrt{12-2\sqrt{11}}}\)
d. D = \(\left(3-\sqrt{2}\right).\sqrt{11+6\sqrt{2}}\)
A=\(\sqrt{23+6\sqrt{10}}-\)\(\sqrt{23-6\sqrt{10}}\)
B=\(\left(\dfrac{2+\sqrt{2}}{\sqrt{2}+1}+1\right)\times\)\(\left(\dfrac{2-\sqrt{2}}{\sqrt{2}-1}-1\right)\)
giúp mik vs![]()
a) Ta có: \(A=\sqrt{23+6\sqrt{10}}-\sqrt{23-6\sqrt{10}}\)
\(=\sqrt{18+2\cdot3\sqrt{2}\cdot\sqrt{5}+5}-\sqrt{18-2\cdot3\sqrt{2}\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(3\sqrt{2}+\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{2}-\sqrt{5}\right)^2}\)
\(=3\sqrt{2}+\sqrt{5}-3\sqrt{2}+\sqrt{5}\)
\(=2\sqrt{5}\)
b) Ta có: \(B=\left(\dfrac{2+\sqrt{2}}{\sqrt{2}+1}+1\right)\left(\dfrac{2-\sqrt{2}}{\sqrt{2}-1}-1\right)\)
\(=\left(\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}+1\right)\left(\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}-1\right)\)
\(=\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)\)
=2-1=2
Tìm x
a) \(\sqrt{4}\)+x=\(\sqrt{16}\)+\(\sqrt{25}\)
b) 12+23=6:x
Anh Quyền à:
Đáp án như sau:
cau a, 47
câu b, 6/35
đúng 100%
tích đi
\(\sqrt{4}\)+x=\(\sqrt{16}\)+\(\sqrt{25}\)
2+x=4+5
2+x=9
x=9-2=7
12+63=6:x
75=6:x
6:x=75
x=6:75=0,08
a) 2 + x = 4 + 5
2 + x = 9
x = 9 - 2
x = 7
b) 12 + 23 = 6 : x
6 : x = 12 + 23
6 : x = 35
x = 6 : 35
x = 6/35
Tính:
a) \(\left(2\sqrt{5}-\sqrt{7}\right).\left(2\sqrt{5}+\sqrt{7}\right)\)
b)\(\left(\sqrt{5-2\sqrt{6}}+\sqrt{2}\right).\sqrt{3}\)
c)\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
d)\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
e)\(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
g)\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}\)
a)
\((2\sqrt{5}-\sqrt{7})(2\sqrt{5}+\sqrt{7})=(2\sqrt{5})^2-(\sqrt{7})^2=13\)
b)
\((\sqrt{5-2\sqrt{6}}+\sqrt{2})\sqrt{3}=(\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2})\sqrt{3}\)
\(=(\sqrt{(\sqrt{3}-\sqrt{2})^2}+\sqrt{2})\sqrt{3}=(\sqrt{3}-\sqrt{2}+\sqrt{2})\sqrt{3}=\sqrt{3}.\sqrt{3}=3\)
c)
\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{2^2+3-2.2\sqrt{3}}+\sqrt{2^2+3+2.2\sqrt{3}}\)
\(=\sqrt{(2-\sqrt{3})^2}+\sqrt{(2+\sqrt{3})^2}=2-\sqrt{3}+2+\sqrt{3}=4\)
d)
\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\sqrt{3^2+6-2.3\sqrt{6}}+\sqrt{9+24-2\sqrt{9.24}}\)
\(=\sqrt{(3-\sqrt{6})^2}+\sqrt{(\sqrt{24}-3)^2}=3-\sqrt{6}+\sqrt{24}-3\)
\(=\sqrt{6}\)
e)
\(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}=\sqrt{\frac{6+2\sqrt{5}}{2}}+\sqrt{\frac{6-2\sqrt{5}}{2}}\)
\(=\sqrt{\frac{5+1+2\sqrt{5.1}}{2}}+\sqrt{\frac{5+1-2\sqrt{5.1}}{2}}=\sqrt{\frac{(\sqrt{5}+1)^2}{2}}+\sqrt{\frac{(\sqrt{5}-1)^2}{2}}\)
\(=\frac{\sqrt{5}+1}{\sqrt{2}}+\frac{\sqrt{5}-1}{\sqrt{2}}=\sqrt{10}\)
g)
\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}=\sqrt{3+5-2\sqrt{3.5}}-\sqrt{20+3-2\sqrt{20.3}}\)
\(=\sqrt{(\sqrt{5}-\sqrt{3})^2}-\sqrt{(\sqrt{20}-\sqrt{3})^2}\)
\(=\sqrt{5}-\sqrt{3}-(\sqrt{20}-\sqrt{3})=\sqrt{5}-\sqrt{20}=-\sqrt{5}\)
1,Rút gọn
a, \(\left(2\sqrt{2}-1\right)\left(\sqrt{8}+1\right)\)
b, \(\left(\sqrt{12}+\sqrt{75}-2\sqrt{27}\right):\sqrt{3}\)
c, \(\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
d, \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
e, \(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)
f, \(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}\)
Phân tích :
1) \(\sqrt{29+12\sqrt{5}}\) - \(\sqrt{29-12\sqrt{5}}\)
2) \(\sqrt{8-2\sqrt{15}}\)- \(\sqrt{23-4\sqrt{15}}\)
3) \(\sqrt{8-2\sqrt{15}}\) + \(\sqrt{48+6\sqrt{15}}\)
4) \(\sqrt{49-5\sqrt{96}}\)+\(\sqrt{49+5\sqrt{96}}\)
5) \(\sqrt{15-6\sqrt{15}}\)+\(\sqrt{33-12\sqrt{6}}\)
6) \(\sqrt{16-6\sqrt{7}}\)+\(\sqrt{64-24\sqrt{7}}\)
7) \(\sqrt{14-6\sqrt{5}}\)+\(\sqrt{14+6\sqrt{5}}\)
8) \(\sqrt{1-6\sqrt{2}}\)+\(\sqrt{11-6\sqrt{2}}\)
9) \(\sqrt{13+4\sqrt{10}}\)+\(\sqrt{13-4\sqrt{10}}\)
10) \(\sqrt{46-6\sqrt{5}}\)+\(\sqrt{29-12\sqrt{5}}\)
\(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}=\left(2\sqrt{5}+3\right)-\left(2\sqrt{5}-3\right)=6\)
\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)-\left(2\sqrt{5}-\sqrt{3}\right)=-\sqrt{5}\)
\(\sqrt{8-12\sqrt{5}}+\sqrt{48+6\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)+\left(3\sqrt{5}+\sqrt{3}\right)=4\sqrt{5}\)
\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\left(5-2\sqrt{6}\right)+\left(5+2\sqrt{6}\right)=10\)
\(\sqrt{15-6\sqrt{15}}+\sqrt{33-12\sqrt{6}}\) đề này sai ạ
\(\sqrt{16-6\sqrt{7}}+\sqrt{64-24\sqrt{7}}=\left(3-\sqrt{7}\right)+\left(6-2\sqrt{7}\right)=9-3\sqrt{7}\)
\(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\left(3-\sqrt{5}\right)+\left(3+\sqrt{5}\right)=6\)
\(\sqrt{1-6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\left(2\sqrt{2}+5\right)+\left(2\sqrt{2}-5\right)=4\sqrt{2}\)
\(\sqrt{46-6\sqrt{5}}+\sqrt{29-12\sqrt{5}}=\left(3\sqrt{5}-1\right)+\left(2\sqrt{5}-3\right)=5\sqrt{5}-4\)
#Học tốt ạ
Rút gọn
\(\sqrt{8-2\sqrt{15}}+\sqrt{48+6\sqrt{15}}\)
\(\sqrt{8-\sqrt{60}}-\sqrt{23-\sqrt{240}}\)
\(\sqrt{29-12\sqrt{5}}-\sqrt{24+8\sqrt{5}}\)
Mọi người giúp mình với ạ. Mình xin chân thành cảm ơn!
\(\sqrt{8-2\sqrt{15}}+\sqrt{48+6\sqrt{15}}\\ =\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}+\sqrt{45+2\cdot3\sqrt{5}\cdot\sqrt{3}+3}\\ =\sqrt{\left(\sqrt{5}\right)^2-2\cdot\sqrt{5}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{5}\right)^2+2\cdot3\sqrt{5}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\\ =\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{5}+\sqrt{3}\right)^2}\\ =\sqrt{5}-\sqrt{3}+3\sqrt{5}+\sqrt{3}=4\sqrt{5}\)
\(\sqrt{8-\sqrt{60}}-\sqrt{23-\sqrt{240}}\\ =\sqrt{8-\sqrt{4\cdot15}}-\sqrt{23-\sqrt{4\cdot60}}\\ =\sqrt{8-2\sqrt{15}}-\sqrt{23-2\sqrt{60}}\\ =\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{20-2\cdot\sqrt{20}\cdot\sqrt{3}+3}\\ =\sqrt{5}-\sqrt{3}-\sqrt{\left(\sqrt{20}-\sqrt{3}\right)^2}\\ =\sqrt{5}-\sqrt{3}-\sqrt{20}+\sqrt{3}\\ =\sqrt{5}-2\sqrt{5}=-\sqrt{5}\)