Tìm x thuộc R thỏa mãn: 81x2 - 18x = \(\dfrac{\sqrt{x}-1}{\sqrt{x}}\) - 9\(\sqrt{x}\) + 4
\(81x^2\)-18x=\(\dfrac{\sqrt{x}-1}{\sqrt{x}}-9\sqrt{x}+4\)
ai giúp mình tìm x thuộc R để thỏa mãn với ạ
Cho A= \(\dfrac{\sqrt{x}-1}{\sqrt{x}}\) Tìm x để 81x2-18x= A - 9√x+4
3) tìm x biết
a) \(\sqrt{x+9}=7\)
b) \(4\sqrt{2x+3}-\sqrt{8x+12}+\dfrac{1}{3}\sqrt{18x+27}=15\)
c) \(\sqrt{x^2-6x+9}=2x+1\)
d) \(\sqrt{x+3+4\sqrt{x-1}}-\sqrt{x+8+6\sqrt{x-1}}=9\)
lm nhanh giúp mk nhé mk đang cần gấp
Lời giải:
a. ĐKXĐ: $x\geq -9$
PT $\Leftrightarrow x+9=7^2=49$
$\Leftrightarrow x=40$ (tm)
b. ĐKXĐ: $x\geq \frac{-3}{2}$
PT $\Leftrightarrow 4\sqrt{2x+3}-\sqrt{4(2x+3)}+\frac{1}{3}\sqrt{9(2x+3)}=15$
$\Leftrightarrow 4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15$
$\Leftrgihtarrow 3\sqrt{2x+3}=15$
$\Leftrightarrow \sqrt{2x+3}=5$
$\Leftrightarrow 2x+3=25$
$\Leftrightarrow x=11$ (tm)
c.
PT \(\Leftrightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-6x+9=(2x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+10x-8=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (3x-2)(x+4)=0\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{2}{3}\)
d. ĐKXĐ: $x\geq 1$
PT \(\Leftrightarrow \sqrt{(x-1)+4\sqrt{x-1}+4}-\sqrt{(x-1)+6\sqrt{x-1}+9}=9\)
\(\Leftrightarrow \sqrt{(\sqrt{x-1}+2)^2}-\sqrt{(\sqrt{x-1}+3)^2}=9\)
\(\Leftrightarrow \sqrt{x-1}+2-(\sqrt{x-1}+3)=9\)
\(\Leftrightarrow -1=9\) (vô lý)
Vậy pt vô nghiệm.
a) \(\sqrt{x+9}=7\left(x\ge-9\right)\Rightarrow x+9=49\Rightarrow x=40\)
b) \(4\sqrt{2x+3}-\sqrt{8x+12}+\dfrac{1}{3}\sqrt{18x+27}=15\left(x\ge-\dfrac{3}{2}\right)\)
\(\Rightarrow4\sqrt{2x+3}-\sqrt{4\left(2x+3\right)}+\dfrac{1}{3}\sqrt{9\left(2x+3\right)}=15\)
\(\Rightarrow4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15\)
\(\Rightarrow3\sqrt{2x+3}=15\Rightarrow\sqrt{2x+3}=5\Rightarrow2x+3=25\Rightarrow x=11\)
c) \(\sqrt{x^2-6x+9}=2x+1\)
Vì \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge-\dfrac{1}{2}\)
\(\Rightarrow\sqrt{\left(x-3\right)^2}=2x+1\Rightarrow\left|x-3\right|=2x+1\Rightarrow\left[{}\begin{matrix}x-3=2x+1\\x-3=-2x-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-4\left(l\right)\\x=\dfrac{2}{3}\end{matrix}\right.\)
d) \(\sqrt{x+3+4\sqrt{x-1}}-\sqrt{x+8+6\sqrt{x-1}}=9\left(x\ge1\right)\)
\(\Rightarrow\sqrt{x-1+4\sqrt{x-1}+4}-\sqrt{x-1+6\sqrt{x-1}+9}=9\)
\(\Rightarrow\sqrt{\left(\sqrt{x-1}+2\right)^2}-\sqrt{\left(\sqrt{x-1}+3\right)^2}=9\)
\(\Rightarrow\left|\sqrt{x-1}+2\right|-\left|\sqrt{x-1}+3\right|=9\)
\(\Rightarrow\sqrt{x-1}+2-\sqrt{x-1}-3=9\Rightarrow-1=9\) (vô lý)
A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}}\) ;B=\(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
Cho P=\(\dfrac{A}{B}\) tìm x thỏa mãn: P.x≤\(10\sqrt{x}-29-\sqrt{x-25}\)
Ta có:
\(B=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\) (ĐK: \(x\ne4;x\ge0\))
\(B=\dfrac{x}{\left(\sqrt{x}\right)^2-2^2}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(B=\dfrac{x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(B=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(B=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(B=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
\(\Rightarrow P=\dfrac{A}{B}=\dfrac{\dfrac{\sqrt{x}+2}{\sqrt{x}}}{\dfrac{\sqrt{x}}{\sqrt{x}-2}}=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\cdot\sqrt{x}}=\dfrac{x-4}{x}\) (ĐK: \(x\ne0\))
Theo đề ta có:
\(P\cdot x\le10\sqrt{x}-29-\sqrt{x}+25\) (ĐK: \(x\ge0\))
\(\Leftrightarrow\dfrac{x-4}{x}\cdot x\le9\sqrt{x}-4\)
\(\Leftrightarrow x-4\le9\sqrt{x}-4\)
\(\Leftrightarrow x-9\sqrt{x}\le0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-9\right)\le0\)
Mà: \(\sqrt{x}\ge0\)
\(\Leftrightarrow\sqrt{x}-9\le0\)
\(\Leftrightarrow\sqrt{x}\le9\)
\(\Leftrightarrow x\le81\)
Kết hợp với đk:
\(0\le x\le81\)
Cho biểu thức \(A=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
Tìm x để thỏa mãn phương trình sau:
\(A.\left(\sqrt{x}-2\right)+5\sqrt{x}=x+4+\sqrt{x+16}+\sqrt{9-x}\)
27. A=\(\left(\dfrac{x-\sqrt{x}+7}{x-4}+\dfrac{1}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{6\sqrt{x}}{x-4}\right)\)
a. rút gọn A
b. Tính A với x thỏa mãn \(\)\(x^2-5x+4=0\)|
c. tìm x khi A=0
d. tìm x để A>5
Phần a,b,c bạn có thể tham khảo bài bên dưới.
Phần d.
ĐKXĐ: $x\geq 0; x\neq 4$
$A>5\Leftrightarrow \frac{x+9}{2\sqrt{x}}>5$ ($x> 0$)
$\Leftrightarrow x+9> 10\sqrt{x}$
$\Leftrightarrow x-10\sqrt{x}+9>0$
$\Leftrightarrow (\sqrt{x}-1)(\sqrt{x}-9)>0$
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} \sqrt{x}-1>0\\ \sqrt{x}-9>0\end{matrix}\right.\\ \left\{\begin{matrix} \sqrt{x}-1<0\\ \sqrt{x}-9<0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x>1\\ x>81\end{matrix}\right.\\ \left\{\begin{matrix} 0\leq x< 1\\ 0\leq x< 81\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x>81\\ 0\leq x< 1\end{matrix}\right.\)
Kết hợp với đkxđ suy ra $x>81$ hoặc $0< x< 1$
a
Với: x \(\ge0,x\) \(\ne4\) có:
\(A=\left(\dfrac{x-\sqrt{x}+7}{x-4}+\dfrac{\sqrt{x}+2}{x-4}\right):\left(\dfrac{\left(\sqrt{x}+2\right)^2}{x-4}-\dfrac{\left(\sqrt{x}-2\right)^2}{x-4}-\dfrac{6\sqrt{x}}{x-4}\right)\)
\(=\left(\dfrac{x-\sqrt{x}+7+\sqrt{x}+2}{x-4}\right):\left(\dfrac{x+4\sqrt{x}+4}{x-4}-\dfrac{x-4\sqrt{x}+4}{x-4}-\dfrac{6\sqrt{x}}{x-4}\right)\)
\(=\left(\dfrac{x+9}{x-4}\right):\left(\dfrac{x+4\sqrt{x}+4-x+4\sqrt{x}-4-6\sqrt{x}}{x-4}\right)\)
\(=\left(\dfrac{x+9}{x-4}\right):\left(\dfrac{2\sqrt{x}}{x-4}\right)\)
\(=\dfrac{\left(x+9\right)\left(x-4\right)}{2\sqrt{x}\left(x-4\right)}=\dfrac{x+9}{2\sqrt{x}}\)
b
Giải \(x^2-5x+4=0\)
Nhẩm nghiệm: a + b + c = 0 (1 - 5 + 4 = 0)
\(\Rightarrow x_1=1;x_2=\dfrac{c}{a}=\dfrac{4}{1}=4\)
Thay x = 1 vào A:
\(A=\dfrac{1+9}{2\sqrt{1}}=\dfrac{10}{2}=5\)
Thay x = 4 vào A:
\(A=\dfrac{4+9}{2.\sqrt{4}}=\dfrac{13}{2.2}=\dfrac{13}{4}\)
c
ĐK: x > 0
\(A=0\Leftrightarrow\dfrac{x+9}{2\sqrt{x}}=0\)
=> \(x+9=0\Rightarrow x=-9\) (không thỏa mãn)
Vậy không xác định được giá trị x
d
ĐK: x > 0
\(A>5\Leftrightarrow\dfrac{x+9}{2\sqrt{x}}>5\)
\(\Leftrightarrow x+9>5.2\sqrt{x}\Leftrightarrow x+9>10\sqrt{x}\)
\(\Leftrightarrow\left(x+9\right)^2>\left(10\sqrt{x}\right)^2=100x\)
<=> \(x^2+18x+81-100x>0\)
<=> \(x^2-82x+81>0\)
<=> \(x^2-81x-x+81>0\)
<=> \(x\left(x-81\right)-\left(x-81\right)>0\)
<=> \(\left(x-1\right)\left(x-81\right)>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-1>0\\x-81>0\end{matrix}\right.\\\left[{}\begin{matrix}x-1< 0\\x-81< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>1\\x>81\end{matrix}\right.\\\left[{}\begin{matrix}x< 1\\x< 81\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>81\\x< 81\end{matrix}\right.\)
Vậy để A > 5 thì x > 81 và 0 < x < 81
Cho x,y thỏa mãn x,y thuộc R và 0\(\le x,y\le\dfrac{1}{2}\) chứng minh rằng \(\dfrac{\sqrt{x}}{1+y}+\dfrac{\sqrt{y}}{1+x}\le\dfrac{2\sqrt{2}}{3}\)
C.hóa \(x+y=1\) và dùng C-S:
\(VT^2\le\frac{2x}{\left(y+1\right)^2}+\frac{2y}{\left(x+1\right)^2}\le\frac{8}{9}=VP^2\)
\(BDT\Leftrightarrow\frac{x}{\left(2-x\right)^2}+\frac{y}{\left(2-y\right)^2}\le\frac{4}{9}\left(1\right)\)
Ta có BĐT phụ \(\frac{x}{\left(2-x\right)^2}\le\frac{20}{27}x-\frac{4}{27}\)
\(\Leftrightarrow-\frac{\left(2x-1\right)^2\left(5x-16\right)}{27\left(x-2\right)^2}\le0\) *Đúng*
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT_{\left(1\right)}\le\frac{20}{27}\left(x+y\right)-\frac{4}{27}\cdot2=\frac{4}{9}=VP_{\left(1\right)}\)
"=" khi \(x=y=\frac{1}{2}\)
Cho các biểu thức:
A = \(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\) và B = \(\dfrac{\sqrt{x}}{\sqrt{x}+x}\) với x > 0
a) So sánh B và 1
b) Đặt P = A : B. Tìm các giá trị của x thỏa mãn \(P\sqrt{x}+\left(2\sqrt{x}-1\right)\sqrt{x}=3x-2\sqrt{x-4}+3\)
a: \(B=\dfrac{1}{\sqrt{x}+1}\)
\(B-1=\dfrac{\sqrt{x}+1-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}>=0\)
=>B>=1
b: \(P=\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
\(P\cdot\sqrt{x}+2x-\sqrt{x}=3x-2\sqrt{x-4}+3\)
=>\(x+\sqrt{x}+1+2x-\sqrt{x}=3x+3-2\sqrt{x-4}\)
=>\(-2\sqrt{x-4}+3=1\)
=>x-4=1
=>x=5
Giải PT:
a) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
b) \(\sqrt{18x-9}-0,5\sqrt{2x-1}+\dfrac{1}{2}\sqrt{25\left(2x-1\right)}+\sqrt{49\left(2x-1\right)}=24\)
c) \(\sqrt{36x-72}-15\sqrt{\dfrac{x-2}{25}}=4\left(5+\sqrt{x-2}\right)\)
d) \(\sqrt{\dfrac{1}{3x+2}}-\dfrac{1}{2}\sqrt{\dfrac{9}{3x+2}}+\sqrt{\dfrac{16}{3x+2}}-5\sqrt{\dfrac{1}{12x+8}}=1\)
e) \(\dfrac{1}{2}\sqrt{\dfrac{49x}{x+2}}-3\sqrt{\dfrac{x}{4x+8}}-\sqrt{\dfrac{x}{x+2}}-\sqrt{5}=0\)
a. ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{3}{2}.\sqrt{9}.\sqrt{x-1}+24.\sqrt{\frac{1}{64}}.\sqrt{x-1}=-17$
$\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17$
$\Leftrightarrow -\sqrt{x-1}=-17$
$\Leftrightarrow \sqrt{x-1}=17$
$\Leftrightarrow x-1=289$
$\Leftrightarrow x=290$
b. ĐKXĐ: $x\geq \frac{1}{2}$
PT $\Leftrightarrow \sqrt{9}.\sqrt{2x-1}-0,5\sqrt{2x-1}+\frac{1}{2}.\sqrt{25}.\sqrt{2x-1}+\sqrt{49}.\sqrt{2x-1}=24$
$\Leftrightarrow 3\sqrt{2x-1}-0,5\sqrt{2x-1}+2,5\sqrt{2x-1}+7\sqrt{2x-1}=24$
$\Leftrightarrow 12\sqrt{2x-1}=24$
$\Leftrihgtarrow \sqrt{2x-1}=2$
$\Leftrightarrow x=2,5$ (tm)
c. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{36}.\sqrt{x-2}-15\sqrt{\frac{1}{25}}\sqrt{x-2}=4(5+\sqrt{x-2})$
$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$
$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)
Vậy pt vô nghiệm
d. ĐKXĐ: $x>\frac{-2}{3}$
PT $\Leftrightarrow \sqrt{\frac{1}{3x+2}}-\frac{1}{2}\sqrt{9}.\sqrt{\frac{1}{3x+2}}+\sqrt{16}.\sqrt{\frac{1}{3x+2}}-5\sqrt{\frac{1}{4}}\sqrt{\frac{1}{3x+2}}=1$
$\Leftrightarrow \sqrt{\frac{1}{3x+2}}-\frac{3}{2}\sqrt{\frac{1}{3x+2}}+4\sqrt{\frac{1}{3x+2}}-\frac{5}{2}\sqrt{\frac{1}{3x+2}}=1$
$\Leftrightarrow \sqrt{\frac{1}{3x+2}}=1$
$\Leftrightarrow \frac{1}{3x+2}=1$
$\Leftrightarrow 3x+2=1$
$\Leftrightarrow x=-\frac{1}{3}$