Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hồng Đức
Xem chi tiết
Nhã Doanh
2 tháng 6 2018 lúc 17:30

Ta có:\(a+2b+3c=0\Rightarrow\left(a+2b+3c\right)^2=a^2+4b^2+9c^2+2\left(2ab+3ac+6bc\right)=0\)

\(\Rightarrow20+2\left(2ab+3ac+6bc\right)=0\)

\(\Rightarrow2\left(2ab+3ac+6bc\right)=-20\)

\(\Rightarrow2ab+3ac+6bc=-10\)

\(\Rightarrow\left(2ab+3ac+6bc\right)^2=100\)

\(\Rightarrow4a^2b^2+9a^2c^2+36b^2c^2+6a^2bc+18abc^2+12ab^2c=100\)

\(\Rightarrow4a^2b^2+9a^2c^2+36b^2c^2+6abc\left(a+3c+2b\right)=100\)

\(\Rightarrow4a^2b^2+9a^2c^2+36b^2c^2+6abc.0=100\)

\(\Rightarrow4a^2b^2+9a^2c^2+36b^2c^2=100\)

Ta có: \(a^2+4b^2+9c^2=20\)

\(\Rightarrow\left(a^2+4b^2+9c^2\right)^2=400\)

\(\Rightarrow a^4+16b^4+81c^4+8a^2b^2+18a^2c^2+72b^2c^2=400\)

\(\Rightarrow a^4+16b^4+81c^4+2\left(4a^2b^2+9a^2c^2+36b^2c^2\right)=400\)

\(\Rightarrow a^4+16b^4+81c^4+2.100=400\)

\(\Rightarrow a^4+16b^4+81c^4=200\)

Bảo Ngọc
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 10 2020 lúc 16:16

Để đơn giản, đặt \(\left(a;-2b;3c\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2=18\end{matrix}\right.\)

Ta cần tính \(P=x^4+y^4+z^4\)

\(xy+yz+zx=\frac{\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{2}=-9\)

\(\Rightarrow2\left(x^2y^2+y^2z^2+z^2x^2\right)=\left(xy+yz+zx\right)^2-2xyz\left(x+y+z\right)=81\)

\(x^4+y^4+z^4=\frac{\left(x^2+y^2+z^2\right)^2-2\left(x^2y^2+y^2z^2+z^2x^2\right)}{2}=\frac{18^2-81}{2}=\frac{243}{2}\)

hung
Xem chi tiết
ng thi thu ha
Xem chi tiết
Bùi Dương Anh Vũ
Xem chi tiết
Phạm viết Trung kiên
Xem chi tiết
Phạm viết Trung kiên
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Tùng Nguyễn
Xem chi tiết