Cho:a+2b+3c=0 và a^2+4b^2+9c^2=20.Tính a^4+16b^4+81c^4
Cho : a+2b+3c=0
a2+4b2+9c2=20
Tính : a4+16b4+81c4
Ta có:\(a+2b+3c=0\Rightarrow\left(a+2b+3c\right)^2=a^2+4b^2+9c^2+2\left(2ab+3ac+6bc\right)=0\)
\(\Rightarrow20+2\left(2ab+3ac+6bc\right)=0\)
\(\Rightarrow2\left(2ab+3ac+6bc\right)=-20\)
\(\Rightarrow2ab+3ac+6bc=-10\)
\(\Rightarrow\left(2ab+3ac+6bc\right)^2=100\)
\(\Rightarrow4a^2b^2+9a^2c^2+36b^2c^2+6a^2bc+18abc^2+12ab^2c=100\)
\(\Rightarrow4a^2b^2+9a^2c^2+36b^2c^2+6abc\left(a+3c+2b\right)=100\)
\(\Rightarrow4a^2b^2+9a^2c^2+36b^2c^2+6abc.0=100\)
\(\Rightarrow4a^2b^2+9a^2c^2+36b^2c^2=100\)
Ta có: \(a^2+4b^2+9c^2=20\)
\(\Rightarrow\left(a^2+4b^2+9c^2\right)^2=400\)
\(\Rightarrow a^4+16b^4+81c^4+8a^2b^2+18a^2c^2+72b^2c^2=400\)
\(\Rightarrow a^4+16b^4+81c^4+2\left(4a^2b^2+9a^2c^2+36b^2c^2\right)=400\)
\(\Rightarrow a^4+16b^4+81c^4+2.100=400\)
\(\Rightarrow a^4+16b^4+81c^4=200\)
Cho a-2b+3c=0 và a2+4b2+9c2=18
Tính P= a4 + 16b4 +81c4
Để đơn giản, đặt \(\left(a;-2b;3c\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2=18\end{matrix}\right.\)
Ta cần tính \(P=x^4+y^4+z^4\)
\(xy+yz+zx=\frac{\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{2}=-9\)
\(\Rightarrow2\left(x^2y^2+y^2z^2+z^2x^2\right)=\left(xy+yz+zx\right)^2-2xyz\left(x+y+z\right)=81\)
\(x^4+y^4+z^4=\frac{\left(x^2+y^2+z^2\right)^2-2\left(x^2y^2+y^2z^2+z^2x^2\right)}{2}=\frac{18^2-81}{2}=\frac{243}{2}\)
Cho a,b,c>0 thỏa mãn a+2b+3c=1
CMR: \(\frac{2ab}{a^2+4b^2}+\frac{6bc}{4b^2+9c^2}+\frac{3ac}{9c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}\right)\ge\frac{15}{4}\)
chi a,,b,c thoa man (a+2b)(2b+3c)(3c+a)khac 0 va
\(\frac{a^2}{a+2b}+\frac{4b^2}{2b+3c}+\frac{9c^2}{3c+a}=\frac{a^2}{2b+3c}+\frac{4b^2}{a+3c}+\frac{9c^2}{a+2b}\)
cmr;\(\frac{a}{6}=\frac{b}{3}=\frac{c}{2}\)
Cho a,b,c thỏa (a+2b)(2b+3c)(3c+a)#0 và
\(\frac{a^2}{a+2b}+\frac{4b^2}{2a+3b}+\frac{9c^2}{3c+a}=\frac{a^2}{2b+3c}+\frac{4b^2}{3c+a}+\frac{9c^2}{a+2b}\)
chứng minh rằng \(\frac{a}{6}=\frac{b}{3}=\frac{c}{2}\).mấy a giải giúp em cái
Bài 6:Cho các số a,b,c khác 0 thỏa mãn
2a-2b+9c=9 Tính giá trị của M=a+3c/a+4b-3c
a-2b+6c=5
Bài 7 Cho a,b>0 thỏa mãn a+b=3.Tìm giá trị nhỏ nhất của biểu thức T=a^2+4/a+b^2/b+3
Bài 6:Cho các số a,b,c khác 0 thỏa mãn
2a-2b+9c=9 Tính giá trị của M=a+3c/a+4b-3c
a-2b+6c=5
Bài 7 Cho a,b>0 thỏa mãn a+b=3.Tìm giá trị nhỏ nhất của biểu thức T=a^2+4/a+b^2/b+3
Chứng minh rằng:\(\frac{a}{1+a^2}+\frac{b}{1+4b^2}+\frac{c}{1+9c^2}=\frac{abc\left(5a+16b+27c\right)}{\left(a+2b\right)\left(a+3c\right)\left(2b+3c\right)}\)
biết các số a, b, c thỏa mãn \(\frac{1}{bc}+\frac{2}{ac}+\frac{3}{ab}=6\)và các biểu thức có nghĩa
cho a,b,c>0. CMR
\(\frac{2ab}{3a+8b+6c}+\frac{3bc}{3b+6c+4}+\frac{3ac}{9c+4a+4b}\le\frac{a+2b+3c}{2}\)