Cho a,b,c,d là các STN và a>b>c>d thỏa mã : ac + bd = ( b+d+a-c)(b+d-a+c)
CMR : ab + cd là hợp số
Các số tự nhiên a,b,c,d sao cho a>b>c>d và ac+bd=(b+d+a-c)(b+d-a+c). cmr ab+cd là hợp số
Cho \(a,b,c,d\in N\) thỏa mãn \(a>b>c>d\) và \(ac+bd=\left(b+d+a-c\right)\left(b+d-a+c\right)\).
Chứng minh \(ab+cd\) là hợp số
Cho a,b,c,d thỏa mãn: a^2+ab+b^2 = c^2+cd+d^2. CMR: a+b+c+d là hợp số
Cho các số nguyên a,b,c,d và a+b+c+d=0.CMR giá trị tuyệt đối của các số ab-cd,ac-bd,ad-bc ko đồng thời là các số nguyên tố
Cho a,b,c nguyên dương thỏa mãn a^2+ab+b^2=c^2+cd+d^2 CMR a+b+c+d là hợp số
Cho a, b, c, d là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b, c, d là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
cho các số nguyên a,b,c,d thỏa mãn a+b+c+d=0
chứng minh rằng (ab-cd)(bc-ad)(ac-bd) là số chính phương
Vì a+b+c+d=0\(\Rightarrow a+b+c=-d\Rightarrow ac+bc+c^2=-cd\)
\(\Rightarrow\)\(ab-cd=ab+ac+bc+c^2=\left(a+c\right)\left(b+c\right)\)
Tương tự ta có \(bc-ad=\left(a+b\right)\left(a+c\right)\)
\(ac-bd=\left(a+b\right)\left(b+c\right)\)
Từ 3 điều trên ta suy ra đpcm
cho các số nguyên dương a>b>c>d thỏa mãn \(a^2+ac-c^2=b^2+bd-d^2\). Cmr: ab+cd là hợp số