Cho M=(-2.x^2.y).(-1/2.x.y^2)^2
Thu gọn và tính giá trị của M tại 2x=-y=1
Thực hiện phép tính :
Thực hiện phép tính :
5.x^2(x-y+1)+(x^2-1)(x+y)
Bài 2:
1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)
\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)
\(=x^3+2^3-2\left(x^2-1\right)\)
\(=x^3+8-2x^2+2=x^3-2x^2+10\)
\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)
\(=\left(-2y\right)^2+4\left(y+2\right)\)
\(=4y^2+4y+8\)
2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)
3: \(B=4y^2+4y+8\)
\(=4y^2+4y+1+7\)
\(=\left(2y+1\right)^2+7>=7>0\forall y\)
=>B luôn dương với mọi y
Bài 1:
5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)
\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)
\(=2x^3-x+x^2-y\)
6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)
\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)
\(=6x^2+23x-55-6x^2-84x-294\)
=-61x-349
Cho biểu thức M=4x2y- (3x2- 2x2y) * (x2 - 3x2y + 5xy)
Thu gọn và tính giá trị của biểu thức M tại x=-1 và y = \(\frac{1}{2}\)
1>Cho đơn thức A=(-1/3x²y⁴)×(-⅗x³y)² a) Thu gọn đơn đơn thức, tìm bậc, hệ số của đơn thức A. b) Tính giá trị của đơn thức tại x=-2 và y=1 2> Cho M(x)=-4x³+2x²+10x-1 và N(x)=4x³+x²+x-10 a) Tính M(x)+ N(x) b) Tính A(x), biết A(x)+M(x)=N(x)
a) Ta có: \(A=\left(-\dfrac{1}{3}x^2y^4\right)\cdot\left(-\dfrac{3}{5}x^3y\right)^2\)
\(=\dfrac{-1}{3}x^2y^4\cdot\dfrac{-9}{5}x^6y^2\)
\(=\left(\dfrac{-1}{3}\cdot\dfrac{-9}{5}\right)\cdot\left(x^2\cdot x^6\right)\cdot\left(y^4\cdot y^2\right)\)
\(=\dfrac{3}{5}x^8y^6\)
cho đa thức M=2xy+9xy^2-2xy-7xy^2-3
a) thu gọn đa thức M
b)tính giá trị của đa thức M tại x=-1 và y=2
`a)`
`M=2xy+9xy^2-2xy-7xy^2-3`
`M=(2xy-2xy)+(9xy^2-7xy^2)-3`
`M=2xy^2-3`
___________________________________
`b)` Thay `x=-1;y=2` vào `M`. Ta có:
`M=2.(-1).2^2-3`
`M=-2.4-3=-8-3=-11`
Rút gọn rồi tính giá trị của biểu thức
a) M=(2x−3y)(2x+3y) tại x=1/2 và y=1/3
b) N=(2x−y)(4x2+2xy+y2) tại x=1 và y= 3
a: \(N=\left(2x-3y\right)\left(2x+3y\right)=\left(2x\right)^2-\left(3y\right)^2\)
\(=4x^2-9y^2\)
Thay x=1/2 và y=1/3 vào N, ta được:
\(N=4\cdot\left(\dfrac{1}{2}\right)^2-9\left(\dfrac{1}{3}\right)^2\)
\(=4\cdot\dfrac{1}{4}-9\cdot\dfrac{1}{9}\)
=1-1
=0
b: \(N=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)
\(=\left(2x\right)^3-y^3=8x^3-y^3\)
Khi x=1 và y=3 thì \(N=8\cdot1^3-3^3=8-27=-19\)
cho đa thức m = -1 phần 4x3y4.(3x2 y)2
a) Thu gọn đơn thức M và chỉ ra bậc, biến, hệ số
b)Tính giá trị của M tại x= -1, y=2
`a)M=[-1]/4x^3y^4 . (3x^2y)^2`
`=>M=[-1]/4x^3y^4 . 9x^4y^2`
`=>M=([-1]/4 . 9)(x^3 . x^4)(y^4 . y^2)`
`=>M=[-9]/4x^7y^6`
`@` Bậc: `7 + 6 = 13`
`@` Biến: `x^7y^6`
`@` Hệ số: `[-9]/4`
__________________________________________
`b)` Thay `x =-1;y=2` vào `M` có:
`M=[-9]/4 . (-1)^7 . 2^6`
`M=[-9]/4 . (-1) . 64`
`M = 144`
Cho biểu thức M=\(x^3\)+3x\(y^2\)- 2xy+\(x^3\)- xy - 2x\(y^2\)+1
a) thu gọn biểu thức M ; tính giá trị biểu thức khi x=-1 ; y=2
A = 3x^3 +6x^2 + 3xy^3
x= 1 phần 2 ; p = -1 phần 3
A=3.1 phần 2^3 . -1 phần 3 + 6.(1 phần 2)^2 . (-1 Phần 3)^2+3 1 phần 2 . (-1 phần 3)^3
=-1 phần 8 + -1 phần 2 - 1 phần 2
= -1 phần 4
Bài 10:
Thu gọn M = 0x2y4z + 7/2x2y4z. Tính giá trị của M tại x = 2 ; y = 1/2 ; z = -1
\(M=\dfrac{7}{2x^2y^4z}\)
Thay x = 2 ; y = 1/2 ; z = -1 ta được
\(M=\dfrac{7}{\dfrac{2.4.1}{16}\left(-1\right)}=\dfrac{7}{\dfrac{1}{2}\left(-1\right)}=\dfrac{7}{-\dfrac{1}{2}}=7:\left(-\dfrac{1}{2}\right)=-14\)
Bài 4: Cho đơn thức M=(-2/3 x y^3)^3 (3xy^2)^3 a) Thu gọn M thức M b) Xác định phần hệ số, phần biến và bậc của đơn c) Tính giá trị của đơn thức M tại x=-1 ;y=1
a: \(M=\left(-\dfrac{2}{3}xy^3\right)^3\cdot\left(3xy^2\right)^3\)
\(=-\dfrac{8}{27}\cdot x^3y^9\cdot27\cdot x^3y^6\)
\(=-8x^6y^{15}\)
b: Hệ số của M là -8
Phần biến của M là \(x^6;y^{15}\)
Bậc của M là 6+15=21
c: Thay x=-1 và y=1 vào M, ta được:
\(M=-8\cdot\left(-1\right)^6\cdot1^{15}=-8\)