Nếu cosa+sina=\(\sqrt{2}\) \(\left(0< a< \dfrac{\pi}{2}\right)\) thì a bằng
Cho sina+ cosa = \(cot\dfrac{a}{2}\) với 0<a<pi. Tính \(tan\left(\dfrac{a+2013\pi}{2}\right)\)
\(\Leftrightarrow2\cdot sin\left(\dfrac{a}{2}\right)\cdot cos\left(\dfrac{a}{2}\right)+2\cdot cos^2\left(\dfrac{a}{2}\right)-1-\dfrac{cos\left(\dfrac{a}{2}\right)}{sin\left(\dfrac{a}{2}\right)}=0\)
=>\(2\cdot cos\left(\dfrac{a}{2}\right)\left(sin\left(\dfrac{a}{2}\right)+cos\left(\dfrac{a}{2}\right)\right)=\dfrac{cos\left(\dfrac{a}{2}\right)+sin\left(\dfrac{a}{2}\right)}{sin\left(\dfrac{a}{2}\right)}\)
=>\(\left(cos\left(\dfrac{a}{2}\right)+sin\left(\dfrac{a}{2}\right)\right)\left(sin\left(a\right)-1\right)=0\)
=>cos(a/2)=-sin(a/2) hoặc sin a-1=0
=>cot(a/2)=-1 hoặc sina =1
=>a=-pi/2(loại) hoặc a=pi/2
\(tan\left(a+\dfrac{2013pi}{2}\right)=tan\left(a+\dfrac{pi}{2}\right)=tan\left(\dfrac{pi}{2}+\dfrac{pi}{2}\right)=tanpi=0\)
Don gian bieu thuc sau
a) A= \(\dfrac{1-cosa+cos2a}{sin2a-sina}\) b) B= \(\sqrt{\dfrac{1}{2}-\dfrac{1}{2}\sqrt{\dfrac{1}{2}+\dfrac{1}{2}cosa}}\) (0<a≤\(\pi\)).
c) C= \(\dfrac{cosa-cos3a+cos5a-cos7a}{sina+sin3a+sin5a+sin7a}\)
có A=\(\dfrac{1-cosa+2cos^2a-1}{2sina.cosa-sina}=\dfrac{cosa\left(2cosa-1\right)}{sina\left(2cosa-1\right)}=\dfrac{cosa}{sina}=cota\)
sina + cosa= \(\sqrt{2}\) sin(a+\(\dfrac{\pi}{4}\)) = \(\sqrt{2}\) cos( a-\(\dfrac{\pi}{4}\))
\(sina+cosa=\sqrt{2}\left(\dfrac{\sqrt{2}}{2}sina+\dfrac{\sqrt{2}}{2}cosa\right)\)
\(=\left[{}\begin{matrix}\sqrt{2}\left(sina.cos\dfrac{\pi}{4}+cosa.sin\dfrac{\pi}{4}\right)\\\sqrt{2}\left(sina.sin\dfrac{\pi}{4}+cosa.cos\dfrac{\pi}{4}\right)\end{matrix}\right.\)
\(=\left[{}\begin{matrix}\sqrt{2}sin\left(a+\dfrac{\pi}{4}\right)\\\sqrt{2}cos\left(a-\dfrac{\pi}{4}\right)\end{matrix}\right.\)
CM: (Sina - Cosa)2 =\(\sqrt{2}\) Cos2(a+\(\dfrac{\pi}{4}\))
Có \(\sin a-\cos a=-\sqrt{2}\left(-\sin a.\sin\dfrac{\pi}{4}+\cos a.\cos\dfrac{\pi}{4}\right)\)
\(=-\sqrt{2}\cos\left(a+\dfrac{\pi}{4}\right)\)
\(\Rightarrow\left(\sin a-\cos a\right)^2=2.\cos^2\left(a+\dfrac{\pi}{4}\right)\)
Chứng minh các hệ thức sau :
a) \(\dfrac{cosa}{1-sina}=\dfrac{1+sina}{cosa}\)
b) \(\dfrac{\left(sina+cosa\right)-\left(sina-cosa\right)^2}{sina.cosa}=4\)
a: \(\sin^2a+\cos^2a=1\)
\(\Leftrightarrow\cos^2a=1-\sin^2a=\left(1-\sin a\right)\left(1+\sin a\right)\)
hay \(\dfrac{\cos a}{1-\sin a}=\dfrac{1+\sin a}{\cos a}\)
b: \(VT=\dfrac{\left(\sin a+\cos a+\sin a-\cos a\right)\left(\sin a+\cos a-\sin a+\cos a\right)}{\sin a\cdot\cos a}\)
\(=\dfrac{2\cdot\cos a\cdot2\sin a}{\sin a\cdot\cos a}=4\)
Cm biểu thức ko phụ thuộc x
\(A=\dfrac{cot^2a-cos^2a}{cot^2a}+\dfrac{sinacosa}{cota}\)
A= sin8x+\(2cos^2x\left(4x+\dfrac{\pi}{4}\right)\)
Cm đẳng thức
\(\dfrac{sin2a-2sina}{sin2a+2sina}+tan^2\dfrac{a}{2}=0\)
\(\dfrac{sina}{1+cosa}+\dfrac{1+cosa}{sina}=\dfrac{2}{sina}\)
\(\dfrac{sin^2x}{sinx-cosx}-\dfrac{sinx+cosx}{tan^2x-1}=sinx+cosx\)
\(\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{1-tan^2a.cot^2b}=-cos^2a.sin^2b\)
phần chứng minh biểu thức không phụ thuộc \(x\)
ta có : \(A=\dfrac{cot^2a-cos^2a}{cot^2a}+\dfrac{sinacosa}{cota}=\dfrac{cot^2a-cos^2a}{cot^2a}+\dfrac{cos^2a}{cot^2a}\)
\(=\dfrac{cot^2a-cos^2a+cos^2a}{cot^2a}=\dfrac{cot^2a}{cot^2a}=1\left(đpcm\right)\)
ý còn lại : xem lại đề nha bn
phần chứng minh đẳng thức
ta có : \(\dfrac{sin2a-2sina}{sin2a+2sina}+tan^2\dfrac{a}{2}=\dfrac{2sinacosa-2sina}{2sinacosa+2sina}+tan^2\dfrac{a}{2}\)
\(=\dfrac{2sina\left(cosa-1\right)}{2sina\left(cosa+1\right)}+tan^2\dfrac{a}{2}=\dfrac{cosa-1}{cosa+1}+tan^2\dfrac{a}{2}\)
\(=\dfrac{1-2sin^2\dfrac{a}{2}-1}{2cos^2\dfrac{a}{2}-1+1}+tan^2\dfrac{a}{2}=\dfrac{-2sin^2\dfrac{a}{2}}{2cos^2\dfrac{a}{2}}+tan^2\dfrac{a}{2}\)
\(=-tan^2\dfrac{a}{2}+tan^2\dfrac{a}{2}=0\left(đpcm\right)\)
ta có : \(\dfrac{sina}{1+cosa}+\dfrac{1+cosa}{sina}=\dfrac{sin^2a+\left(1+cosa\right)^2}{sina\left(1+cosa\right)}\)
\(=\dfrac{sin^2a+cos^2a+2cosa+1}{sina\left(1+cosa\right)}=\dfrac{2cosa+2}{sina\left(cosa+1\right)}\)
\(=\dfrac{2\left(cosa+1\right)}{sina\left(cosa+1\right)}=\dfrac{2}{sina}\left(đpcm\right)\)
còn 2 câu kia để chừng nào rảnh mk giải cho nha
mk lm 2 câu còn lại nha
ta có : \(\dfrac{sin^2x}{sinx-cosx}-\dfrac{sinx+cosx}{tan^2x-1}=\dfrac{\left(1-cos^2x\right)\left(tan^2x-1\right)-\left(sin^2x-cos^2x\right)}{\left(sinx-cosx\right)\left(tan^2x-1\right)}\)
\(=\dfrac{tan^2x-sin^2x-sin^2x-sin^2x+cos^2x}{\left(sinx-cosx\right)\left(tan^2x-1\right)}=\dfrac{\dfrac{sin^4x}{cos^2x}-sin^2x-sin^2x+cos^2x}{\left(sinx-cosx\right)\left(tan^2-1\right)}\)
\(=\dfrac{tan^2x\left(sin^2x-cos^2x\right)-\left(sin^2x-cos^2x\right)}{\left(sinx-cosx\right)\left(tan^2x-1\right)}=\dfrac{\left(tan^2x-1\right)\left(sin^2x-cos^2x\right)}{\left(sinx-cosx\right)\left(tan^2x-1\right)}\)
\(=sinx+cosx\left(đpcm\right)\)
ta có : \(\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{1-tan^2a.cot^2b}=\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{1-\dfrac{sin^2a.cos^2b}{cos^2a.sin^2b}}\)
\(=\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{\dfrac{cos^2a.sin^2b-sin^2a.cos^2b}{cos^2a.sin^2b}}=\dfrac{sin\left(a+b\right)sin\left(a-b\right).cos^2a.sin^2b}{-\left(sin^2a.cos^2b-cos^2a.sin^2b\right)}\)
\(=\dfrac{sin\left(a+b\right)sin\left(a-b\right).cos^2a.sin^2b}{-\left(\left(sina.cosb-cosa.sinb\right)\left(sina.cosb+cosa.sinb\right)\right)}\)
\(=\dfrac{sin\left(a+b\right)sin\left(a-b\right).cos^2a.sin^2b}{-sin\left(a-b\right)sin\left(a+b\right)}=-cos^2a.sin^2b\left(đpcm\right)\)
mk lm hơi tắc ! do tối rồi , mà mk lại đang ở quán nek nên không tiện làm dài . bạn thông cảm
chứng minh rằng
1) \(sina+\sqrt{3}cosa=2cos\left(a-\frac{\pi}{6}\right)\)
\(sina+\sqrt{3}cosa=2\left(\frac{1}{2}sina+\frac{\sqrt{3}}{2}cosa\right)\)
\(=2\left(sina.cos\frac{\pi}{3}+cosa.sin\frac{\pi}{3}\right)=2sin\left(a+\frac{\pi}{3}\right)\)
\(=2cos\left(\frac{\pi}{2}-a-\frac{\pi}{3}\right)=2cos\left(\frac{\pi}{6}-a\right)=2cos\left(a-\frac{\pi}{6}\right)\)
Rút gọn
a) A= \(\frac{4sin^2a}{1-cos^2\frac{a}{2}}\)
b) B= \(\frac{1+cosa-sina
}{1-cosa-sina}\)
c) C= \(\frac{1+sina-2sin^2\left(45-\frac{\pi}{2}\right)}{4cos\frac{a}{2}}\)
Lời giải:
a)
\(A=\frac{4\sin ^2a}{1-\cos ^2\frac{a}{2}}=\frac{4\sin ^2a}{\sin ^2\frac{a}{2}}=\frac{4(2\sin \frac{a}{2}\cos \frac{a}{2})^2}{\sin ^2\frac{a}{2}}=16\cos ^2\frac{a}{2}\)
b)
Sử dụng công thức: \(1-\cos 2a=2\sin ^2a; 1+\cos 2a=2\cos ^2a\) và \(\sin 2a=2\sin a\cos a\) ta có:
\(B=\frac{1+\cos a-\sin a}{1-\cos a-\sin a}=\frac{2\cos ^2\frac{a}{2}-2\sin \frac{a}{2}\cos \frac{a}{2}}{2\sin ^2\frac{a}{2}-2\sin \frac{a}{2}.\cos \frac{a}{2}}\)
\(=\frac{2\cos \frac{a}{2}(\cos \frac{a}{2}-\sin \frac{a}{2})}{2\sin \frac{a}{2}(\sin \frac{a}{2}-\cos \frac{a}{2})}\)
\(=\frac{-\cos \frac{a}{2}}{\sin \frac{a}{2}}=-\cot \frac{a}{2}\)
c) \(45-\frac{\pi}{2}\)??? sao đơn vị nó không thống nhất vậy?
chon sina=\(\dfrac{5}{13}\) với \(\dfrac{\Pi}{2}< a< \Pi\) tính các giá trị lượng giác cosa,sin2a, cos\(a-\dfrac{\Pi}{3}\)
Tính cos \(\left(a-\dfrac{\pi}{6}\right)\) biết sina = \(\dfrac{1}{3}\), \(\dfrac{\pi}{2}< a< \pi\)
\(\dfrac{\Omega}{2}< a< \Omega\)
=>\(cosa< 0\)
\(sin\alpha=\dfrac{1}{3}\)
\(\Leftrightarrow cos^2\alpha=1-sin^2\alpha=1-\left(\dfrac{1}{3}\right)^2=\dfrac{8}{9}\)
mà cosa<0
nên \(cos\alpha=-\dfrac{2\sqrt{2}}{3}\)
\(cos\left(\alpha-\dfrac{\Omega}{6}\right)=cos\alpha\cdot cos\left(\dfrac{\Omega}{6}\right)+sin\alpha\cdot sin\left(\dfrac{\Omega}{6}\right)\)
\(=-\dfrac{2\sqrt{2}}{3}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{1}{3}\cdot\dfrac{1}{2}\)
\(=\dfrac{-2\sqrt{6}+1}{6}\)