a) Tính BC
b) Tính AG
c) Chứng minh LC vuông góc với AC
Cho tam giác ABC góc A = 90 độ, AB = 6cm, AC = 8cm. M là trung điểm của BC
a, Tính BC,AM?
b, Gọi G la trong tam cua tam giác ABC tính AG?
c, kẻ MN vuông góc AC , N thuộc AC
Chứng minh AN =NC
ABC cân tại A, góc A = 500:
a) Tính góc B, góc C?
b) Vẽ AH vuông góc với BC (H thuộc BC). Chứng minh ABH=ACH.
c) Biết AB = 17cm, BC = 16cm, tính AH?
Vẽ CN vuông góc AB (N thuộc AB), BM vuông góc AC (M thuộc AC). Chứng minh NC = MB.
Mong bạn thông cảm vì chữ mk xấu.
Chúc bạn học tốt!
a) Ta có: ΔABC cân tại A(gt)
nên \(\widehat{B}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)
\(\Leftrightarrow\widehat{B}=\dfrac{180^0-50^0}{2}=\dfrac{130^0}{2}\)
hay \(\widehat{B}=65^0\)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
mà \(\widehat{ABC}=65^0\)(cmt)
nên \(\widehat{ACB}=65^0\)
Vậy: \(\widehat{ABC}=65^0\); \(\widehat{ACB}=65^0\)
b) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
c) Ta có: ΔABH=ΔACH(cmt)
nên BH=CH(hai cạnh tương ứng)
mà BH+CH=BC(H nằm giữa B và C)
nên \(BH=\dfrac{BC}{2}=\dfrac{16}{2}=8\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2=17^2-8^2=225\)
hay AH=15(cm)
Vậy: AH=15cm
d) Xét ΔANC vuông tại N và ΔAMB vuông tại M có
AC=AB(ΔABC cân tại A)
\(\widehat{BAM}\) chung
Do đó: ΔANC=ΔAMB(cạnh huyền-góc nhọn)
Suy ra: NC=MB(hai cạnh tương ứng)
Cho ΔABC cân có AB = AC = 10cm, BC = 16cm. Kẻ AH vuông góc BC (H thuộc BC) a. Chứng minh: HB = HC. b. Tính độ dài AH. c. Gọi G là trọng tâm tam giác ABC, xác định vị trí của G thông qua tính AG. d. Kẻ HD vuông góc với AB (D∈AB), kẻ HE vuông góc với AC (E∈AC). Chứng minh ΔHDE cân. d) So sánh HD và HC (Giúp tui với)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
b: HB=HC=BC/2=8cm
=>AH=căn 10^2-8^2=6cm
c: Xét ΔABC có
AH là trung tuyến
G là trọng tâm
=>A,G,H thẳng hàng và AG=2/3AH=4cm
d: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
=>ΔADH=ΔAEH
=>HD=HE
e: HD=HE
HE<HC
=>HD<HC
ABC cân tại A, góc A = 500:
a) Tính góc B, góc C?
b) Vẽ AH vuông góc với BC (H thuộc BC). Chứng minh ABH=ACH.
c) Biết AB = 17cm, BC = 16cm, tính AH?
d) Vẽ CN vuông góc AB (N thuộc AB), BM vuông góc AC (M thuộc AC). Chứng minh NC = MB.
∆ABC cân tại A, góc A = 50 độ:
a) Tính góc B, góc C?
b) Vẽ AH vuông góc với BC (H thuộc BC). Chứng minh ∆ABH= ∆ACH.
c) Biết AB = 17cm, BC = 16cm, tính AH?
d) Vẽ CN vuông góc AB (N thuộc AB), BM vuông góc AC (M thuộc AC). Chứng minh NC = MB.
a: \(\widehat{B}=\widehat{C}=\dfrac{180^0-50^0}{2}=65^0\)
b: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
DO đó: ΔABH=ΔACH
c: BC=16cm nên BH=8cm
=>AH=15cm
Cho tam giác ABC cân (AB=AC). Tia phân giác của góc A cắt cạnh BC tại D. Từ D kẻ DE vuông góc với AB và DF vuông góc với AC (E thuộc AB và Fthuộc AC)
a, CHỨNG MINH EF// BC
B,TÍNH AD BIẾT AB=AC=10CM VÀ BC=12CM
C,TRÊN TIA ĐỐI CỦA TIA ED LẤY ĐIỂM G SAO CHO EG=ED .CHỨNG MINH AG VUÔNG GÓC VỚI GB.
Cho tam giác ABC có góc A =90độ, AG vuông góc BC, từ G kẻ GĐ vuông góc AB, GE vuông góc AC .Gọi M là điểm đối xứng với G quá E , gọi H là trung điểm của CG Chứng minh: a) DE = AG b) góc DHE=90độ c) DE // AM
a: Xét tứ giác ADGE có
góc ADG=góc AEG=góc EAD=90 độ
nên ADGE là hình chữ nhật
=>DE=AG
c: Xét tứ giác ADEM có
AD//EM
AD=EM
Do đó: ADEM là hình bình hành
=>DE//AM
cho tam giác ABC vuông tại A, có AB = 3cm, AC = 4cm.
a)tính độ dài cạnh BC
b)dường trung tuyến AM và đường trung tuyến BN cắt ngay tại G. tính AG.
c) trên tia đối của tia NB ,lấy diểm D sao cho NB = ND chứng minh CD vuông góc AC.
Giúp mik với !!!
a/
\(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\) (Pitago)
b/
Ta có
\(AM=\dfrac{BC}{2}=\dfrac{5}{2}=2,5cm\) (Trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
\(AG=\dfrac{2}{3}AM=\dfrac{2}{3}.\dfrac{5}{2}=\dfrac{5}{3}cm\) (trong tg 3 đường trung tuyến đồng quy tại 1 điểm và điểm đó cách đỉnh 1 khoảng bằng 2/3 độ dài đường trung tuyến mà trung tuyến đó đi qua)
c/
Xét tg ABN và tg CDN có
AN=CN (gt); BN=DN (gt)
\(\widehat{ANB}=\widehat{CND}\) (Góc đối đỉnh)
=> tg ABN=tg CDN (c.g.c)=> \(\widehat{BAN}=\widehat{DCN}=90^o\Rightarrow CD\perp AC\)
cho tam giác nhọn ABC cân tại A có AB=13cm, BC=10cm. kẻ AH vuông góc với BC tại H
a) chứng minh tam giác ABH = tam giác ACH
b) gọi M là trung điểm của AC, G là giao điểm của BM và AH. tính AG
c) kẻ HE vuông góc với AB,HF vuông góc với AC (E thuộc AB, F thuộc AC. tia EH cắt AC tại I và tia FH cắt AB tại K. chứng minh AH là đường trung trực của đoạn thẳng IK.
d) từ H kẻ HD song song với AC (D thuộc AB). chứng minh ba điểm C, G, D thẳng hàng
ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
mấy bạn bớt nhắn linh tinh lên đây đi, olm là nơi học bài và hỏi bài chứ không phải nhắn lung tung
d, ta có:
bd/ba=bh/bc=1/2 suy ra bd=1/2ba
suy ra d là trung điểm ab
suy ra cd là dườngd truing tuyến của tam giác abc
suy ra g thuộc cd( tc trọng tâm tâm giác)
suy ra c,g,d thẳng hàng
Cho tam giác ABC có M là trung điểm của BC và tia AM là tia phân giác của góc A. Cho G là trong tâm của tam giác.
a) Chứng minh tam giác ABC cân tại A?
b) Cho AG = 4cm, BC = 16cm. Tính độ dài các đoạn thẳng AM, AB?
c) Kẻ BK vuông góc với AC tại K, BK cắt AM tại H. Chứng minh CH vuông góc với AB
Pls giúp mình mai thì rùi ạ:((
b) Ta có: G là trọng tâm của ΔBAC(gt)
mà AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)
nên \(AM=\dfrac{3}{2}\cdot AG\)(Định lí)
\(\Leftrightarrow AM=\dfrac{3}{2}\cdot4=6\left(cm\right)\)
Ta có: ΔABC cân tại A(cmt)
mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)
nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)
Ta có: M là trung điểm của BC(gt)
nên \(BM=CM=\dfrac{BC}{2}=\dfrac{16}{2}=8\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABM vuông tại M, ta được:
\(AB^2=AM^2+BM^2\)
\(\Leftrightarrow AB^2=6^2+8^2=100\)
hay AB=10(cm)
Vậy: AM=6cm; AB=10cm
a) Xét ΔABC có:
AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)
AM là đường phân giác ứng với cạnh BC(Gt)
Do đó: ΔABC cân tại A(Định lí tam giác cân)
c) Xét ΔBAC có
AM là đường cao ứng với cạnh BC(cmt)
BK là đường cao ứng với cạnh AC(gt)
AM cắt BK tại H(gt)
Do đó: H là trực tâm của ΔABC(Định lí ba đường cao của tam giác)
Suy ra: CH\(\perp\)AB(Đpcm)