CMR: \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\).Với a, b, c>0
Giúp mk vs các bạn ơi!!!
Cho phân thức
\(M=\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)\left(ab+bc+ca\right)^2}{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}\)
a) Tìm các giá trị của a,b,c để phân thức được xác định (tức để mẫu khác 0)
b)Rút gọn phân thức M.
Các bạn giúp mk với!
a)Ta có :
(a+b+c)2 - (ab+bc+ca) =0 <=> a2+b2+c2+ab+bc+ca =0
<=>2a2+2b2+2c2+2ab+2bc+2ca=0
<=>(a+b)2+(b+c)2+(c+a)2=0
<=>a+b =b+c =c+a =0
<=>a=b=c=0
Vậy điều kiện để phân thức M được xác định là a;b;c không đồng thời bằng 0.
b)Ta có hằng thức: (a+b+c)2=a2+b2+c2+2(ab+bc+ca)
Ta đặt a2+b2+c2=x ; ab+bc+ca=y.Khi đó (a+b+c)2= x+2y
Ta có:
\(M=\frac{x\left(x+2y\right)+y^2}{x+2y-y}=\frac{x^2+2xy+y^2}{x+y}=\frac{\left(x+y\right)^2}{x+y}=x+y\)
= a2+b2+c2+ab+bc+ca.
=a2+b2+c2+ab+bc+ca
Gt thêm nhe
a)\(M=\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)\left(ab+bc+ac\right)^2}{\left(a+b+c\right)^2-\left(ab+bc+ac\right)}\)
Biểu thức có nghĩa\(\Leftrightarrow\left(a+b+c\right)^2-\left(ab+bc+ac\right)\ne0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac-ab-bc-ac\ne0\)
\(\Leftrightarrow a^2+b^2+c^2+ab+bc+ac\ne0\)
\(\Leftrightarrow2a^2+2b^2+2c^2+2ab+2bc+2ac\ne0\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(a^2+2ac+c^2\right)\ne0\)
\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2\ne0\)
Mà \(\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2=0\Leftrightarrow a=b=c=0\)
nên M có nghĩa\(\Leftrightarrow a,b,c\)không đồng thời bằng 0
các bạn ơi giúp dùm mình với !!!!!!!!!!! MÌNH CHÂN THÀNH CẢM ƠN!!!!!!!!!!!!!!!!!
chứng minh:
\(a\times\left(1+b^2\right)+b\times\left(1+c^2\right)+c\times\left(1+a^2\right)\ge2\times\left(ab+bc+ca\right)\)
áp dụng bất đẳng thức cauchy cho hai số dương
\(1+b^2\ge2\sqrt{1\cdot b^2}=2b\)
\(1+c^2\ge2c\)
\(1+a^2\ge2a\)
\(\Rightarrow a\cdot\left(1+b^2\right)+b\cdot\left(1+c^2\right)+c\cdot\left(1+a^2\right)\ge2ab+2bc+2ca\)
a,b,c là các số thực dương thỏa mãn a+b+c=3. CMR: \(\dfrac{a\left(a+bc\right)^2}{b\left(ab+2c^2\right)}+\dfrac{b\left(b+ca\right)^2}{c\left(bc+2a^2\right)}+\dfrac{c\left(c+ab\right)^2}{a\left(ca+2b^2\right)}>=4\)
Trước hết theo BĐT Schur bậc 3 ta có:
\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc\ge2\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\) (do \(a+b+c=3\)) (1)
Đặt vế trái BĐT cần chứng minh là P, ta có:
\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)^2}{a^2c^2+2ab^2c}\)
\(\Rightarrow P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)
Áp dụng (1):
\(\Rightarrow P\ge\dfrac{\left[2\left(ab+bc+ca\right)\right]^2}{\left(ab+bc+ca\right)^2}=4\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho ba số dương a , b ,c thõa mãn ab+bc+ca=3
CMR: \(\frac{bc}{a^2\left(b+2c\right)}+\frac{ac}{b^2\left(c+2a\right)}+\frac{ab}{c^2\left(a+2b\right)}\ge1\)
Giúp mình vs nha cảm ơn !!!
Ta có : \(3=ab+bc+ac\ge3\sqrt[3]{\left(abc\right)^2}\Rightarrow1\ge abc\)
\(\frac{bc}{a^2\left(b+2c\right)}+\frac{ac}{b^2\left(c+2a\right)}+\frac{ab}{c^2\left(a+2b\right)}\)
\(=\frac{\left(bc\right)^2}{abc\left(ab+2ac\right)}+\frac{\left(ac\right)^2}{abc\left(bc+2ab\right)}+\frac{\left(ab\right)^2}{abc\left(ca+2cb\right)}\)
\(\ge\frac{\left(ab+bc+ac\right)^2}{abc\left(3ab+3ac+3bc\right)}\)\(=\frac{3^2}{9abc}\)\(\ge1\)\(\left(dpcm\right)\)
a) cho a2+b2+c2=ab+bc+ca. chứng minh a=b=c
b) cho 2( x2+t2)+(y+t)(y-t) = 2x(y+t). chứng minh x=y=t
c) cho a+b+c=0; ab+bc+ac=0. chứng minh A= (a-1)2003+b2004+(c+1)2005
Giúp mk vs các bạn ơi, mk cần gấp
a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(Vt\ge0\left(\forall a,b,c\right)\) nên dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Rightarrow a=b=c\)
Ta có : a2 + b2 + c2 = ab + bc + ca
=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
= (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0
=> (a - b)2 + (b - c)2 + (c - a)2 = 0
=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\left(\text{đpcm}\right)\)
b) Ta có : 2(x2 + t2) + (y + t)(y - t) = 2x(y + t)
=> 2x2 + 2t2 + y2 - t2 = 2xy + 2t
=> 2x2 + t2 + y2 = 2xt + 2xy
=> 2x2 + t2 + y2 - 2xt - 2xy = 0
=> (x2 - 2xy + y2) + (x2 + t2 - 2xt) = 0
=> (x - y)2 + (x - t)2 = 0
=> \(\hept{\begin{cases}x-y=0\\x-t=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x=t\end{cases}}\Rightarrow x=y=t\left(\text{đpcm}\right)\)
c) Ta có a + b + c = 0
=> (a + b + c)2 = 0
=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0
=> a2 + b2 + c2 + 2(ab + bc + ca) = 0
=> a2 + b2 + c2 = 0
=> a = b = c = 0
Khi đó A = (0 - 1)2003 + 02004 + (0 + 1)2005
= - 1 + 0 + 1 = 0
Vậy A = 0
b) Ta có: \(2\left(x^2+t^2\right)+\left(y+t\right)\left(y-t\right)=2x\left(y+t\right)\)
\(\Leftrightarrow2x^2+2t^2+y^2-t^2-2xy-2xt=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2xt+t^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-t\right)^2=0\)
Tương tự phần a => \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-t\right)^2=0\end{cases}}\Rightarrow x=y=t\)
cho:a,b,c>0 CMR:
\(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ab}\le\frac{3\left(a+b+c\right)}{2\left(ab+bc+ca\right)}\)
Bài này mình gặp rất nhiều khó khăn khi biến đổi, và vì biểu thức quá dài nên mình phải dùng ký hiệu \(\Sigma_{sym}\), có thể sẽ gặp phải những sai sót-> sai cả bài, do đó bài làm bên dưới chỉ nêu hướng làm thôi (quy đồng).
Nhân hai vế của BĐT cho \(2\left(ab+bc+ca\right)\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)\) BĐT cần chứng minh tương đương:
\(\Leftrightarrow\)\(3\Sigma_{sym}a^3b^3c+\Sigma_{sym}ab^4c^2\ge3\Sigma_{sym}a^5bc+\Sigma_{sym}a^4b^3\)
\(\Leftrightarrow3\Sigma_{sym}\left(a^3b^3c-ab^5c\right)+\Sigma_{sym}b^4c^2a\ge\Sigma_{sym}a^4b^3\)
Do \(3\Sigma_{sym}\left(a^3b^3c-ab^5c\right)\ge0\) theo định lí Muirhead.
Do đó ta sẽ chứng minh: \(\Sigma_{sym}b^4c^2a\ge\Sigma_{sym}a^4b^3\). Và chịu:(
Không mất tính tổng quát, ta giả sử c là số nhỏ nhất.
Đặt \(f\left(a;b;c\right)=VP-VT\) và \(t=\frac{a+b}{2}\)
Trước hết ta chứng minh \(f\left(a;b;c\right)\ge f\left(t;t;c\right)\).
Xét hiệu hai vế và nó tương đương ta thấy nó \(\ge0\) do giả sử:
Vậy ta chỉ cần chứng minh \(f\left(t;t;c\right)\ge0\Leftrightarrow\frac{\left(c-t\right)^2\left(3c^2+3ct+2t^2\right)}{2t\left(c+t\right)\left(2c+t\right)\left(c^2+t^2\right)}\ge0\) (đúng)
Vậy ta có đpcm.
P/s: Lần sau cho đề đẹp đẹp tí, kiểu này quy đồng mà không có máy tính thì cực chetme:(
Giả sử . Sau khi quy đồng ta cần chứng minh:
Với thì mấy cụm phía sau rất dễ xử lí (a sẽ gửi cách xử trong tin nhắn).
Done.
Cho a,b, c >0 và \(\frac{c\left(ab+1\right)^2}{b^2\left(bc+1\right)}=\frac{a\left(bc+1\right)^2}{c^2\left(ca+1\right)}=\frac{b\left(ca+1\right)^2}{a^2\left(ab+1\right)}\) CMR: \(a=b=c\)
cho a,b,c là các số thực không âm. CMR:
\(ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)\le\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)\)
Bạn tham khảo lời giải tại đây:
Câu hỏi của Nguyễn Xuân Đình Lực - Toán lớp 9 | Học trực tuyến
cho a,b,c>0;\(a+b+c,abc=1\).CMR
\(\dfrac{bc}{a^2\left(b+c\right)}+\dfrac{ca}{b^2\left(c+a\right)}+\dfrac{ab}{c^2\left(a+b\right)}\ge\dfrac{3}{2}\)
Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)\Rightarrow xyz=1\)
\(P=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)