Chứng minh bất đẳng thức x⁴+16>=2x³+8x
Chứng minh đẳng thức, bất đẳng thức: \(2x^2+2x+1>0\) với mọi x
Ta có: \(2x^2+2x+1\)
\(=2\left(x^2+x+\frac{1}{2}\right)\)
\(=2\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)\)
\(=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)
Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall x\)
hay \(2x^2+2x+1>0\forall x\)(đpcm)
Chứng minh đẳng thức, bất đẳng thức: \(2x^2+2x+1>0\) với mọi x
Chứng minh đẳng thức, bất đẳng thức: \(2x^2+2x+1\)>0 với mọi x
chứng minh đẳng thức sau
( x+5 ) ( x+1 ) + ( x-2 ) ( x ^{ 2 } +2x+4 ) -x ( x ^{ 2 } +x-2 ) = 8x-3
help với
\(=x^2+6x+5+x^3-8-x^3-x^2+2x\)
=8x-3
Chứng minh các bất đẳng thức sau
a, x2≥2x-1
\(x^2\ge2x-1\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow\left(x-1\right)^2\ge0\)
Có: \(\left(x-1\right)^2\ge0,\forall x\)
\(\rightarrow x^2-2x+1\ge0,\forall x\)
\(\Rightarrow x^2\ge2x-1,\forall x\)
Nhớ tick mik nha
chứng minh bất đẳng thức 2a^3+8a<=a^4+16
\(2a^3+8a\le a^4+16\)
\(\Leftrightarrow2a^3+8a-a^4-16\le0\)
\(\Leftrightarrow\left(2a^3-a^4\right)+\left(8a-16\right)\le0\)
\(\Leftrightarrow-a^3\left(a-2\right)+8\left(a-2\right)\le0\)
\(\Leftrightarrow-\left(a-2\right)\left(a^3-8\right)\le0\Leftrightarrow-\left(a-2\right)^2\left(a^2+2a+4\right)\le0\)
TA THẤY : \(\left(a-2\right)^2\left(a^2+2a+4\right)\ge0\)\(\Leftrightarrow-\left(a-2\right)^2\left(a^2+2a+4\right)\le0\)\(\Leftrightarrow2a^3+8a\le a^4+16\left(dpcm\right)\)
DẤU " = " XẢY RA KHI X = 2
TK CHO MK NKA !!!
Cho x,y,z là 3 số thực dương thỏa mãn xyz=1.Chứng minh bất đẳng thức
\(\frac{1}{\left(2x+y+z\right)^2}+\frac{1}{\left(x+2y+z\right)^2}+\frac{1}{\left(x+y+2z\right)^2}\le\frac{3}{16}\)
Chứng minh bất đẳng thức sau thỏa mãn mọi x,y : x2+5y2+2x-4xy-10y+14 > 0
Chứng minh bất đẳng thức
x^4 + x^3 + x + 1
A = _______________ > hoặc = 0
x^4 - x^3 + 2x^2 - x + 1