cho a,b,c có tổng bằng 1
CMR;\(\dfrac{a}{2a+b+c}+\dfrac{b}{a+2b+c}+\dfrac{c}{a+b+2c}\)
cho a,b,c là các số thực không âm có tổng bằng 1.CMR
a(b-c)2+b(c-a)2+c(a-b)2 bé hơn hoặc bằng 1/4
Cho 3 số nguyên dương a, b, c có tổng bằng 1. CMR:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Áp dụng BĐT AM - GM cho 3 số không âm, ta được:
\(a+b+c\ge3\sqrt[3]{abc}\); \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\left(đpcm\right)\)( Vì a + b + c = 1)
Áp dụng BĐT sờ vác sơ ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)
1.Cmr hình thang có 2 đáy=nhau thì 2 cạnh bên // và bằng nhau.
2.Cmr trong 1 tứ giác thì ko thể có 4 góc đều nhọn, ko thể có 4 góc đều tù.
3.Cmr trong 1 tứ giác tổng độ dài 2 đường chéo luôn lớn hơn tổng 2 cạnh đối.
4.Cho tứ giác ABCD có A^-B^=20độ, C^-D^=20độ
a)Cmr ABCD là hình thang
b)Tính A^B^C^D^ biết A^=2D^
Bài 2:
Nếu cả bốn góc trong một tứ giác đều là góc nhọn thì tổng của bốn góc đó sẽ nhỏ hơn 360 độ(trái với định lí tổng bốn góc trong một tứ giác)
Nếu cả bốn góc trong một tứ giác đều là góc tù thì tổng của bốn góc đó sẽ lớn hơn 360 độ(trái với định lí tổng bốn góc trong một tứ giác)
Ta có đpcm
1) Xét ΔABC và ΔCDA có
AB=CD(gt)
\(\widehat{BAC}=\widehat{DCA}\)(hai góc so le trong, AB//CD)
AC chung
Do đó: ΔABC=ΔCDA(c-g-c)
Suy ra: \(\widehat{ACB}=\widehat{CAD}\)(hai góc tương ứng)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC(Đpcm)
BÀI 1: Cho 3 số dương a,b,c có tổng bằng 1
CMR;\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
BÀI 2: Cho a,b,c là 3 cạnh tam giác:
CMR: \(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge\)
Giúp mình nhé mai nộp rồi. mk tick cho
Ta có bổ đề :
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge9\)
Thật vậy: \(BĐT\Leftrightarrow3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\ge9\)(luôn đúng vì a/b+b/a>=2)
mà a+b+c=1 nên ta được \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
còn bài 2 phần đằng sau là j ạ>???
Cho a b c d là các số thực dương có tổng bằng một cmr a bình trên a cộng b cộng với b bình trên b cộng c cộng với c bình trên c cộng d cộng với d bình trên d cộng a lớn hơn bằng 1/2
Cho a,b,c là các số thực dương có tổng bằng 1.CMR \(\left(a+\frac{1}{b}\right)\cdot\left(b+\frac{1}{c}\right)\cdot\left(c+\frac{1}{a}\right)\le\left(\frac{10}{3}\right)^3\)
Cho các số không âm a,b,c có tổng bằng 1,CMR
\(\sqrt{a+b^2}+\sqrt{b+c^2}+\sqrt{c+a^2}\le\frac{11}{5}\)
Cho 3 số dương a, b, c có tổng bằng 1. CMR: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)
Cauchy-Schwarz: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{1}=9\)
Cho 3 phân thức: \(\dfrac{a-b}{ab+1};\dfrac{b-c}{bc+1};\dfrac{c-a}{ca+1}\). CMR: Tổng của 3 phân thức này bằng tích của chúng
Ta có \(\dfrac{a-b}{ab+1}+\dfrac{b-c}{bc+1}+\dfrac{c-a}{ca+1}=\dfrac{\left(a-b\right)\left(bc+1\right)\left(ca+1\right)+\left(b-c\right)\left(ca+1\right)\left(ab+1\right)+\left(a-b\right)\left(bc+1\right)\left(ca+1\right)}{\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)}\).