Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Coin Hunter
Xem chi tiết

a.

\(2^{2024}=2^2.2^{2022}=4.\left(2^3\right)^{674}=4.8^{674}\)

Do \(8\equiv1\left(mod7\right)\Rightarrow8^{674}\equiv1\left(mod7\right)\)

\(\Rightarrow4.8^{674}\equiv4\left(mod7\right)\)

Hay \(2^{2024}\) chia 7 dư 4

b.

\(5^{70}+7^{50}=\left(5^2\right)^{35}+\left(7^2\right)^{25}=25^{35}+49^{25}\)

Do \(\left\{{}\begin{matrix}25\equiv1\left(mod12\right)\\49\equiv1\left(mod12\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}25^{35}\equiv1\left(mod12\right)\\49^{25}\equiv1\left(mod12\right)\end{matrix}\right.\)

\(\Rightarrow25^{35}+49^{25}\equiv2\left(mod12\right)\)

Hay \(5^{70}+7^{50}\) chia 12 dư 2

c.

\(3^{2005}+4^{2005}=\left(3^5\right)^{401}+\left(4^5\right)^{401}=243^{401}+1024^{401}\)

Do \(\left\{{}\begin{matrix}243\equiv1\left(mod11\right)\\1024\equiv1\left(mod11\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}243^{401}\equiv1\left(mod11\right)\\1024^{401}\equiv1\left(mod11\right)\end{matrix}\right.\)

\(\Rightarrow243^{401}+1024^{401}\equiv2\left(mod11\right)\)

Hay \(3^{2005}+4^{2005}\) chia 11 dư 2

d.

\(1044\equiv1\left(mod7\right)\Rightarrow1044^{205}\equiv1\left(mod7\right)\)

Hay \(1044^{205}\) chia 7 dư 1

e.

\(3^{2003}=3^2.3^{2001}=9.\left(3^3\right)^{667}=9.27^{667}\)

Do \(27\equiv1\left(mod13\right)\Rightarrow27^{667}\equiv1\left(mod13\right)\)

\(\Rightarrow9.27^{667}\equiv9\left(mod13\right)\)

hay \(3^{2003}\) chia 13 dư 9

lenguyenphong
Xem chi tiết
Citii?
21 tháng 12 2023 lúc 12:00

Gọi số chia trường hợp trên là x:

89 - 12 ⋮ x

77 ⋮ x ⇒ Ư(77) = {1;7;11;77} mà x > 12 ⇒ x = 77 ⇒ Số chia = 77

Thương của phép trên là: (89 - 12) : 77 = 1

 

Trần Khánh Chi
Xem chi tiết

Ta có: 623 : 12 = 51 (dư 11)

Vậy số chia là 51

Trần Minh Phúc
Xem chi tiết
Duc Loi
27 tháng 4 2018 lúc 20:20

\(5^2\equiv1\left(mod12\right)\Rightarrow5^{2010}\equiv1\left(mod12\right)< 1>.\)

\(7^2\equiv1\left(mod12\right)\Rightarrow7^{10}\equiv1\left(mod12\right)< 2>.\)

\(Từ< 1>và< 2>\Rightarrow5^{2010}+7^{10}\equiv2\left(mod12\right).\)

\(\Rightarrow5^{2010}+7^{10}:12dư2.\)

Vậy \(5^{2010}+7^{10}:12dư2\)

vũ giao linh
Xem chi tiết
đinh nguyễn phương linh
Xem chi tiết
Nguyễn Hà Anh
Xem chi tiết
»» Hüỳñh Äñh Phươñg ( ɻɛ...
17 tháng 12 2020 lúc 19:53

tìm tổng SBC và SC, rồi làm tổng - tỉ

Khách vãng lai đã xóa
luu thi tuyet
Xem chi tiết
Nguyễn Lâm Bảo Ngọc
Xem chi tiết
Nguyễn Hà My
8 tháng 12 2021 lúc 8:22

Thì theo tính chất kết hợp của phép cộng, tổng của các số chia hết cho 5 sẽ chia hết cho 5. 570,705,750 đều là số chia hết cho 5 nên tổng của chúng chia hết cho 5

Khách vãng lai đã xóa
Trần Thị Như Quỳnh
8 tháng 12 2021 lúc 8:24

vì tận cùng của nó là số 0,5 mà các số có tận cùng là 0,5 sẽ chia hết cho 5. Nên 570,705,750 sẽ chia hết cho 5

Khách vãng lai đã xóa
Đỗ Phạm Tiến Minh
8 tháng 12 2021 lúc 8:35

vì số tận cùng của tổng là 5 nên có thể chia hết cho năm 

Khách vãng lai đã xóa
Ami Pandan cute
Xem chi tiết
Osi
15 tháng 3 2018 lúc 20:34

1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\)                                         \(7^2=49\equiv1\left(mod12\right)\)

             \(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\)                                     \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)

           \(\rightarrow5^{70}\equiv1\left(mod12\right)\)                                                 \(\rightarrow7^{70}\equiv1\left(mod12\right)\)

Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)

Bài 2 :  Ta có : 3012 = 13.231 + 9

Do đó: 3012 đồng dư với 9 (mod13)

=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)

=> \(3012^3\)đồng dư với 1 (mod13)

Hay \(3012^{93}\)đồng dư với 1 (mod13)

=> \(3012^{93}-1\)đồng dư với 0 (mod13)

Hay \(3012^{93}-1⋮13\left(đpcm\right)\)

           

Bếu hít