Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tiến Dũng
Xem chi tiết
Ngô Gia Bảo
Xem chi tiết
ST
19 tháng 6 2018 lúc 10:52

Ta có: (a+b+c)2=a2+b2+c2

<=>a2+b2+c2+2ab+2bc+2ca=a2+b2+c2

<=>ab+bc+ca=0

<=>\(\frac{ab+bc+ca}{abc}=0\)

<=>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

<=> \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\) (1)

<=> \(\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)

<=>\(\frac{1}{a^3}+\frac{3}{a^2b}+\frac{3}{ab^2}+\frac{1}{b^3}=-\frac{1}{c^3}\)

<=>\(\frac{1}{a^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{b^3}=-\frac{1}{c^3}\) (2)

Thay (1) vào (2) ta đc:

\(\frac{1}{a^3}-\frac{3}{abc}+\frac{1}{b^3}=-\frac{1}{c^3}\)

<=>\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\left(đpcm\right)\)

Lê Nguyên THái
19 tháng 6 2018 lúc 10:20

toán lớp 7 có cái này hả??

Ta có:\((a+b+c)^2=a^2+b^2+c^2\)

      <=>\(a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2\)

      <=>\(ab+ac+bc=0\)

Phân tích ngược từ chứng minh. Lưu ý: cách này chỉ trình bày ngoài nháp rồi mới trình bày từ duới lên

Nếu \({1\over a^3} + {1\over b^3} +{1\over c^3}={3\over abc}\)

Nhân với abc cả hai vế

\({abc\over a^3} + {abc\over b^3} +{abc\over c^3}=3\)

<=>\({bc\over a^2} + {ac\over b^2} +{ab\over c^2}=3\)

mà ab+ac+bc=0 

=>\({-(ac+ab)\over a^2} + {-(bc+ba)\over b^2} +{-(ac+bc)\over c^2}=3\)

<=>\({-a(c+b)\over a^2} + {-b(c+a)\over b^2} +{-c(a+b)\over c^2}-3=0\)

<=>\({c+b\over a} + {c+a\over b} +{a+b\over c}+3=0\)

<=>\({c+b\over a} +1+ {c+a\over b} +1+{a+b\over c}+1=0\)

<=>\({c+b+a\over a} ++ {c+a+b\over b} +{a+b+c\over c}=0\)

<=>\((a+b+c)({1\over a}+{1\over b}+{1\over c})=0\)

tới đây không phải là ta có được 2 vế trên =0 . Mà phải chứng minh 1 trong 2 vế trên bằng 0 

Ta có \(ab+ac+bc=0\)(1)

mà a,b,c  khác 0 theo đề bài nên ta có quyền chia abc cho vế (1)

=>\({ab\over abc}+{cb\over abc}+{ac\over abc}=0\)

=>\({1\over a}+ {1\over b}+ {1\over c}=0\)

Vậy từ dữ kiện ta có thể suy ngược lại tất cả nãy giờ ta chúng minh được 

ginambao
5 tháng 1 2021 lúc 22:57

lô có ai ko vậy giải cách khác đi

Khách vãng lai đã xóa
Nguyễn Minh Đăng
Xem chi tiết
Nguyễn Văn Phước
Xem chi tiết
Phan Thanh Tịnh
2 tháng 6 2016 lúc 20:49

abc + cba = 100a + 10b + c + 100c + 10b + a = 101a + 20b + 101c = 101(a + c) + 20b = 101.9 + 20b = 909 + 20b < 1000 (vì nó có 3 chữ số )

=> 20b < 1000 - 909 = 91 => b < \(\frac{91}{20}=4\frac{11}{20}\)

=> A = { b \(\in N\); b < \(4\frac{11}{20}\)} = { 0 ; 1 ; 2 ; 3 ; 4 } có 5 phần tử

Trần Dương An
Xem chi tiết
bảo ngọc
Xem chi tiết
0o0 Nguyễn Văn Cừ 0o0
29 tháng 7 2017 lúc 20:27

Giải nè: 
Cách I:(((dành cho nhũng ai biết HĐT a³ + b³ + c³ = [(a + b + c)(a² + b²+ c²-ab-bc-ca)+3abc]))) 
Ta có: 
bc/a²+ac/b²+ ab/c²=abc/a³+abc/b³+abc/c³ 
=abc(1/a³ + 1/b³ + 1/c³) 
=abc[(1/a + 1/b + 1/c)(1/a² + 1/b²+ 1/c²-1/ab-1/bc-1/ca)+3/abc](áp dụng HĐt trên) 
=abc.3/(abc)=3 
Cách II: 
Từ giả thiết suy ra: 
(1/a +1/b)³=-1/c³ 
=>1/a³+1/b³+1/c³=-3.1/a.1/b(1/a+1/b)=3...‡ 
=>bc/a²+ac/b²+ ab/c²=abc/a³+abc/b³+abc/c³ 
=abc(1/a³ + 1/b³ + 1/c³) 
=abc.3/(abc)=3

Nguyễn Linh Chi
31 tháng 12 2019 lúc 13:51

Câu hỏi của ngô thị đào - Toán lớp 8 - Học toán với OnlineMath

Bài làm đúng.

Khách vãng lai đã xóa
lyzimi
Xem chi tiết
ma tốc độ
9 tháng 12 2015 lúc 13:49

nhật minh lm sai r

Từ : a+1b = b+1c
 a-b=1c-1b
 a-b=bcbc (1)
Từ : b+1c=c+1a
 b-c = c+1a
 b-c = bcac(2)
Từ : c+1a=a+1b
 c-a =1b-1a
 c-a=abab(3)
Nhân tùng vế của (1)(2)(3) cho nhau ,ta đc:
(a-b)(b-c)(c-a) = (ab)(bc)(ca)a2b2c2
 a^2b^2c^2(a-b)(b-c)(c-a)=(a-b)(b-c)(c-a)
 (a-b)(b-c)(a^2b^2c^2 -a)=0
Vì a,b,c đôi một khác nhau 
 ( a-b)(b-c)(c-a)khác 0
 a^2b^2c^2 -1 =0
 abc= 1 or abc=-1

Nguyễn Nhật Minh
9 tháng 12 2015 lúc 13:25

Giả  sử abc =1 ta có

\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\Leftrightarrow a+ac=b+bc=c+bc\)

=>a(1+c)=b(1+c)=c(1+b)

=>a =b=c vô lí vì a;b;c đôi 1 khác nhau

=> Không có a,b,c nào thỏa mãn ,

Yim Yim
Xem chi tiết
Trịnh Xuân Diện
Xem chi tiết
huongkarry
Xem chi tiết