Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhi@
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2023 lúc 21:41

a,b,c là các số dương nên \(\left(a+b+c\right)>=3\cdot\sqrt[3]{abc}\)

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)>=3\cdot\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}\)

Do đó: \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)>=3\cdot\sqrt[3]{abc}\cdot3\cdot\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}=9\cdot\sqrt[3]{a\cdot b\cdot c\cdot\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}=9\)

phạm minh
Xem chi tiết
Lê Song Phương
29 tháng 1 2023 lúc 17:45

Mình bổ sung một cách làm khác nhé.

Áp dụng BĐT Cô-si cho 3 số dương \(a,b,c\), ta có \(a+b+c\ge3\sqrt[3]{abc}\) \(\Rightarrow1\ge3\sqrt[3]{abc}\)      (1)

Áp dụng BĐT Cô-si cho 3 số dương \(\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c}\) ta có \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)           (2)

Nhân theo vế của các BĐT (1) và (2), ta được \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\) (đpcm)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{3}\)

Nguyễn thành Đạt
29 tháng 1 2023 lúc 14:58

\(Ta\) có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(=\dfrac{a+b+c}{a}+\dfrac{a+b+c}{b}+\dfrac{a+b+c}{c}\)

\(=1+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{a}{b}+\dfrac{c}{b}+1+\dfrac{a}{c}+\dfrac{b}{c}+1\)

\(=\left(1+1+1\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)+\left(\dfrac{c}{b}+\dfrac{b}{c}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\)

\(Ta\) có : \(\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\ge2\Leftrightarrow\dfrac{a^2+b^2}{ab}-2\ge0\Leftrightarrow\dfrac{a^2-2ab+b^2}{ab}\ge0\)

\(cmt\) \(tương\) \(tự\) \(với\) : \(\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\) \(và\) \(\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\) \(đều\) \(\ge2\) \(như\) \(\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge2\)

\(\Rightarrow\dfrac{a+b+c}{a}+\dfrac{a+b+c}{b}+\dfrac{a+b+c}{c}\ge9\) \(hay\) \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)

Quách Trần Gia Lạc
Xem chi tiết
 Mashiro Shiina
6 tháng 1 2018 lúc 16:40

Áp dụng bất đẳng thức Cauchy-Schwarz:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{1}=9\)

Dấu "=" xảy ra khi: \(a=b=c=\dfrac{1}{3}\)

Ma Sói
6 tháng 1 2018 lúc 16:41

Áp dụng BĐT Svacxo ta được

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{\left(a+b+c\right)}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}=9\)

Vậy BĐT được chứng minh

ha thi thuy
Xem chi tiết
ngonhuminh
12 tháng 8 2017 lúc 9:11

BDT

\(x+\dfrac{1}{x}=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2\ge2\)

nhân PP vào là ra

\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3+2+2+2=9\)

TFBoys
12 tháng 8 2017 lúc 10:40

Theo BĐT Cauchy:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c\)

Unruly Kid
13 tháng 8 2017 lúc 11:26

Áp dụng BĐT C-S, ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)

\(\Rightarrow VT\ge9\)

Đẳng thức xảy ra khi a=b=c

Nguyễn Hồng Pha
Xem chi tiết
Akai Haruma
8 tháng 9 2017 lúc 8:37

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq (1+1+1)^2\)

\(\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq 9\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)

Bướm Đêm Sát Thủ
Xem chi tiết
Trần Đăng Nhất
3 tháng 4 2018 lúc 20:52

Cho 3 số dương a; b; c có tổng bằng 1,Chứng minh 1/a + 1/b + 1/c = 9,a + b + c = 1,Toán học Lớp 8,bà i tập Toán học Lớp 8,giải bà i tập Toán học Lớp 8,Toán học,Lớp 8

huyền thoại đêm trăng
3 tháng 4 2018 lúc 20:47

áp dụng BĐT:
1/a +1/b+1/c>= 9/a+b+c mà a+b+c=1

=>1/a+1/b+1/c≥9

Thiên Hi
3 tháng 4 2018 lúc 20:52
https://i.imgur.com/mT2jU9m.jpg
Nguyễn Kim Thành
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2021 lúc 0:42

\(VT\ge\dfrac{1}{\left(a^2+1\right)-1}+\dfrac{1}{\left(b^2+1\right)-1}+\dfrac{1}{\left(c^2+1\right)-1}+4-\dfrac{4}{ab+1}+4-\dfrac{4}{bc+1}+4-\dfrac{4}{ca+1}\)

\(VT\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{4}{ab+1}-\dfrac{4}{bc+1}-\dfrac{4}{ca+1}+12\)

Mặt khác \(a;b;c\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab+1\ge a+b\) (và tương tự...)

\(\Rightarrow VT\ge\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+12\)

\(VT\ge\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(b+c\right)^2}+\dfrac{4}{\left(c+a\right)^2}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+1+1+1+9\)

\(VT\ge\left(\dfrac{2}{a+b}-1\right)^2+\left(\dfrac{2}{b+c}-1\right)^2+\left(\dfrac{2}{c+a}-1\right)^2+9\ge9\)

Dung Phạm
Xem chi tiết
Hoàng Ngọc Tuyết Nung
Xem chi tiết
Phạm Nguyễn Tất Đạt
22 tháng 4 2018 lúc 10:12

Cách khác:

Đặt \(A=\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\)

\(A=\left(1+\dfrac{a+b}{a}\right)\left(1+\dfrac{a+b}{b}\right)\)

\(A=\left(2+\dfrac{b}{a}\right)\left(2+\dfrac{a}{b}\right)\)

\(A=4+2\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+1\)

\(A\ge4+2\cdot2\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}+1=9\left(AM-GM\right)\left(đpcm\right)\)

Phùng Khánh Linh
22 tháng 4 2018 lúc 12:01

( 1 + \(\dfrac{1}{a}\))\(\left(1+\dfrac{1}{b}\right)\) ≥ 9

Biến đổi VT Ta có : VT = \(\dfrac{a+1}{a}.\dfrac{b+1}{b}\)

= \(\dfrac{2a+b}{a}.\dfrac{2b+a}{b}\)

=\(\left(2+\dfrac{b}{a}\right)\left(2+\dfrac{a}{b}\right)\)

= 4 + \(\dfrac{2a}{b}+\dfrac{2b}{a}+\dfrac{b}{a}.\dfrac{a}{b}\)

= 5 + 2( \(\dfrac{a}{b}+\dfrac{b}{a}\) ) ( *)

Áp dụng BĐT : \(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2( x > 0 ; y > 0) ( ** )

Từ ( * ; **) ⇒ 5 + 2( \(\dfrac{a}{b}+\dfrac{b}{a}\) ) ≥ 5 + 4 = 9 ( đpcm )

Như
22 tháng 4 2018 lúc 9:18
https://i.imgur.com/7jn4PR2.jpg