tìm GTNN của E=(x2+x-6)(x2+x+2)
A=(-x2+x-11)/(x2-2*x+1)
tìm gtln,gtnn của biểu thức giúp e với ạ
ĐKXĐ: x<>1
Đặt A=K
=>\(\frac{-x^2+x-11}{x^2-2x+1}=K\)
=>\(K\left(x^2-2x+1\right)=-x^2+x-11\)
=>\(KX^2-2K\cdot x+K+x^2-x+11=0\)
=>\(x^2\left(K+1\right)+x\left(-2K-1\right)+K+11=0\) (1)
\(\Delta=\left(-2K-1\right)^2-4\left(K+1\right)\left(K+11\right)\)
\(=4K^2+4K+1-4K^2-48K-44=-44K-43\)
Để (1) có nghiệm thì Δ>=0
=>-44K-43>=0
=>-44K>=43
=>K<=-43/44
=>A<=-43/44
=>GTLN của A là -43/44 và A không có giá trị nhỏ nhất
Dấu '=' xảy ra khi \(A=-\frac{43}{44}\)
=>\(\frac{-x^2+x-11}{x^2-2x+1}=\frac{-43}{44}\)
=>\(\frac{x^2-x+11}{x^2-2x+1}=\frac{43}{44}\)
=>\(44\left(x^2-x+11\right)=43\left(x^2-2x+1\right)\)
=>\(44x^2-44x+484=43x^2-86x+43\)
=>\(x^2+42x+441=0\)
=>\(\left(x+21\right)^2=0\)
=>x+21=0
=>x=-21
. Tìm GTLN, GTNN của biểu thức:
1) Tìm GTNN của biểu thức:
a) A = x2 - 7x +11. | b) D = x - 2 + x - 3 . |
c) C = 3 - 4x . x2 +1 | d) B = -5 . x2 - 4x + 7 |
e) x2 - x +1 . M = + x +1 x2 | f) P x 1 x 2 x 3 x 6 . |
2) Tìm GTLN của biểu thức
|
| 2x 2 + 4x + 9 |
|
b) | A = x 2 + 2x + 4 . | ||
|
| ||||||||||||||||||||
c) C = (x2 - 3x +1)(21+ 3x - x2 ) . | d) D = 6x - 8 . x2 +1 | ||||||||||||||||||||
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
1. cho x+y = 1 . tìm GTNN của biểu thức C = x2 + y2
2. cho x + 2y =1 . tìm GTNN của biểu thức P = x2 + 2y2
3. cho x + y =1 . tìm GTNN của biểu thức G = 2x2 + y2
4. cho x + y =1 . tìm GTNN của biểu thức H = x2 + 3y2
5. cho 2x + y =1 . tìm GTNN của biểu thức I = 4x2 + 2y2
6. tìm các số thực thõa mãn Pt :
2x2 + 5y2 + 8x - 10y + 13 = 0
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
Bài 6: a)Tìm GTLN, GTNN của biểu thức sau:
a. x2 – 6x +11 b. –x2 + 6x – 11
c) Chứng minh rằng: x2 + 2x + 2 > 0 với x Z
c: \(=\left(x+1\right)^2+1>0\forall x\)
Trả lời:
a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của biểu thức bằng 2 khi x = 3
b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTLN của biểu thức bằng - 2 khi x = 3
c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\) (đpcm)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1
tìm GTNN của biểu thức :
B=2x2 40x-15
C=x2-4xy+5y2-4y+28
Tìm GTLN của biểu thức :
D= - x2+4x+3
E=x-x2
F=\(\dfrac{5}{x^{2+2x+5}}\)
Mọi người ơi, giúp mình bài này với, cảm ơn mọi người nhiều nha !!!
Cho pt: x^2 -(m-1)x -3 =0 (1)
A. Giải pt khi m=3
B. Tìm m để pt có 2 nghiệm x1,x2 thoã mãn hệ thức x1^2 +x2^2 = 15
C. Tìm GTNN của bt: -6/ x1^2 + x2^2 + x1xx2, biết x1,x2 là 2 nghiệm của pt (1)
1. Cho phương trình : x² - 2mx + m² -m+1=0 (1) (m là tham số)
Tìm m để phương trình (1) có 2 nghiệm x1,x2 khi đó tìm GTNN của S=(x-x2+2)+x2(x2-x+2)+2018.
\(\Delta=\left(-2m\right)^2-4\left(m^2-m+1\right)\)
=4m^2-4m^2+4m-4=4m-4
Để (1) có 2 nghiệm thì 4m-4>=0
=>m>=1
Bài 2 Tìm nghiệm của các đa thức sau:
a) (x2 – 9)(x + l); b) x2 + 4x – 5;
c) x2+ 9x + 20; d) x2 – x – 20;
e) 2x2 +7x + 6; f) 3x2 + x – 4.
Tìm x biết:
a/ 5x( x- 3) = x – 3 b/ x3 - x = 0 c/ x2 – 7x + 6 = 0
d/ x2 – 4 + ( x – 2)2 = 0 e/ x2 – 16 –( x +4) = 0 f/ x2 + x – 2 = 0
a: \(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
b: \(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
b)Tìm GTNN của A(x) = x2 - x - 2
`A(x)=x^2-x-2`
`A(x)=x^2-2.x. 1/2+1/4-9/4`
`A(x)=(x-1/2)^2-9/4`
Vì `(x-1/2)^2 >= 0 AA x`
`=>(x-1/2)^2-9/4 >= -9/4 AA x`
Hay `A(x) >= -9/4 AA x`
Dấu "`=`" xảy ra `<=>(x-1/2)^2=0=>x-1/2=0=>x=1/2`
Vậy `GTN N` của `A(x)` là: `-9/4` khi `x=1/2`