cho a+b+c=1 chung minh 1/a+1/b+1/c >=9
chung minh rang voi a,b,c la cac so duong ,ta co (a+b+c)(1/a+1/b+1/c)>=9
Ta có (a+b+c)(1/a+1/b+1/c) = 1 + 1 + 1 + a/b + a/c + b/a + b/c + c/a + c/b
= 3 + (a/b + b/a) + (a/c + c/a) + (b/c + c/b) (1)
Vì a, b, c > 0 nên ta có (Áp dụng Côsi)
a/b + b/a \(\ge\) 2 (2)
a/c + c/a \(\ge\) 2 (3)
b/c + c/b \(\ge\) 2 (4)
Từ (1), (2), (3) và (4) suy ra
(a+b+c)(1/a+1/b+1/c) \(\ge\) 9
Dấu "=" xảy ra <=> a = b = c
Chung minh rang :
1/a+1/b+1/c lớn hơn hoặc bằng 9/a+b+c
cho a/c=(a-b)/(b-c) chung minh 1/a+1/(a-b)=1/(b-c)-1/c
cho 1<a<b+c<a+1 va b<c chung minh b<a
cho a,b, c > hoac = 0 va a+b+c=1.chung minh
\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}>3.5\)
2 cho a,b,c >0 . chung minh
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}>hoac=3\)
2. Áp dụng bất đẳng thức Cô - si cho 3 số dương \(\frac{a}{b},\frac{b}{c},\frac{c}{a}\)ta có
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)\(=3\)
Dấu "=" xảy ra <=> a = b = c
cho a+b+c=1 va 1/a+1/b+1/c=0.Chung minh rang : a^2+b^2+c^2=0
a) a/b + b/a >_ 2
b) (a+b)(1/a +1/b)>_ 4
c) (a+b+c) (1/a +1/b +1/c)>_9
2. chung minh rang moi a, b la cac so tuy y, ta co :
a) (a-1)(a-3)(a-4)(a-6) +9 >_ 0
b) 4a(a-b)(a+1)(a+b+1) + b2 >_ 0
3. giai phuong trinh | x2 - x + 2| - 3x + 7 = 0
cho a>o,b>0,c>o va a+b+c=1
chung minh: (1+a)(1+b)(1+c)>=8(1-a)(1-b)(1-c)
cho 2/a=1/b+1/c(a,b,c khac 0,a khac c).Chung minh rang b/c=b-a/a-c