Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Bích Ngọc
Xem chi tiết
Lê Thanh Phú
Xem chi tiết
Minh Khá
Xem chi tiết
Minh Khá
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 5 2019 lúc 16:19

\(sin^8x-cos^8x-4sin^6x+6sin^4x-4sin^2x\)

\(=sin^8x-\left(1-sin^2x\right)^4-4sin^6x+6sin^4x-4sin^2x\)

\(=sin^8x-\left(1-4sin^2x+6sin^4x-4sin^6x+sin^8x\right)-4sin^6x+6sin^4x-4sin^2x\)\(=-1\) (bạn chép nhầm đề)

b/ \(\frac{sin6x+sin2x+sin4x}{1+cos2x+cos4x}=\frac{2sin4x.cos2x+sin4x}{1+cos2x+2cos^22x-1}=\frac{sin4x\left(2cos2x+1\right)}{cos2x\left(2cos2x+1\right)}=\frac{sin4x}{cos2x}=\frac{2sin2x.cos2x}{cos2x}=2sin2x\)

c/ \(\frac{1+sin2x}{cosx+sinx}-\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}=\frac{sin^2x+cos^2x+2sinx.cosx}{cosx+sinx}-\left(1-tan^2\frac{x}{2}\right)cos^2\frac{x}{2}\)

\(=\frac{\left(sinx+cosx\right)^2}{sinx+cosx}-\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)=sinx+cosx-cosx=sinx\)

d/ \(cos4x+4cos2x+3=2cos^22x-1+4cos2x+3\)

\(=2\left(cos^22x+2cos2x+1\right)=2\left(cos2x+1\right)^2=2\left(2cos^2x-1+1\right)^2=8cos^4x\)

e/

Bạch Mỹ Miêu
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 8 2022 lúc 10:26

a: ĐKXĐ; 1-sin x>=0

=>sin x<=1(luôn đúng)

b: ĐKXĐ: 1-cosx>=0

=>cosx<=1(luôn đúng)

c: ĐKXĐ: 1-cos2x>=0

=>cos2x<=1

=>-1<=cosx<=1(luôn đúng)

 

Nguyễn Minh Anh
Xem chi tiết
Trần Trần
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2019 lúc 17:35

Bài 1:

a/ Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\)

\(\Leftrightarrow\left(m+1\right)\left(m-2\right)< 0\)

\(\Rightarrow-1< m< 2\)

b/ Để \(f\left(x\right)>0\) vô nghiệm \(\Rightarrow f\left(x\right)\le0\) đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m+1< 0\\\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\-m+3\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -1\\m\ge3\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

Bài 2:

a/ \(\Leftrightarrow\left\{{}\begin{matrix}2>0\\\Delta=\left(m-2\right)^2-8\left(-m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+4m-28< 0\)

\(\Rightarrow-2-4\sqrt{2}< m< -2+4\sqrt{2}\)

b/ \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta=\left(m-1\right)^2-4m\left(m-1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left(m-1\right)\left(-1-3m\right)\ge0\end{matrix}\right.\) \(\Rightarrow0< m\le1\)

Bài 3:

\(cot\left(x-\frac{\pi}{4}\right)=\frac{cos\left(x-\frac{\pi}{4}\right)}{sin\left(x-\frac{\pi}{4}\right)}=\frac{cosx.cos\frac{\pi}{4}+sinx.sin\frac{\pi}{4}}{sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}}=\frac{sinx+cosx}{sinx-cosx}\)

Phạm Ngọc Anh
Xem chi tiết
Kim Ricard
28 tháng 1 2023 lúc 18:56

\(I= \int \frac{sinx-cosx}{(sinx+cosx)^2-4}\ dx \\u=sinx+cosx, du=(cosx-sinx) dx=-(sinx-cosx)dx \\I = -\int \frac{du}{u^2-4} \\ =-\int \frac{\frac{1}{4}}{u-2}+\frac{\frac{1}{4}}{u+2}\ du \\ = -\frac{1}{4}ln(|\frac{sinx+cosx-2}{sinx+cosx+2}|)+C\)

Thao Nhi Nguyen
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 6 2020 lúc 0:45

\(\frac{sinx}{1+cosx}+\frac{1+cosx}{sinx}=\frac{sin^2x+\left(1+cosx\right)^2}{sinx\left(1+cosx\right)}=\frac{sin^2x+cos^2x+2cosx+1}{sinx\left(1+cosx\right)}\)

\(=\frac{2+2cosx}{sinx\left(1+cosx\right)}=\frac{2\left(1+cosx\right)}{sinx\left(1+cosx\right)}=\frac{2}{sinx}\)

\(\frac{cosx}{1-sinx}=\frac{cos2.\frac{x}{2}}{1-sin2.\frac{x}{2}}=\frac{cos^2\frac{x}{2}-sin^2\frac{x}{2}}{sin^2\frac{x}{2}+cos^2\frac{x}{2}-2sin\frac{x}{2}.cos\frac{x}{2}}=\frac{\left(cos\frac{x}{2}-sin\frac{x}{2}\right)\left(cos\frac{x}{2}+sin\frac{x}{2}\right)}{\left(cos\frac{x}{2}-sin\frac{x}{2}\right)^2}\)

\(=\frac{sin\frac{x}{2}+cos\frac{x}{2}}{cos\frac{x}{2}-sin\frac{x}{2}}=\frac{\sqrt{2}cos\left(\frac{\pi}{4}-\frac{x}{2}\right)}{\sqrt{2}sin\left(\frac{\pi}{4}-\frac{x}{2}\right)}=cot\left(\frac{\pi}{4}-\frac{x}{2}\right)\)