Cho tam giác ABC. Phân giác AD. BD=2,DC=4. Trung trực AD cắt BD tại K. Tính KD
Cho tam giác ABC, tia phân giác AD, BD = 2, DC = 4. Đường trung trực của AD cắt BC tại K. TÍnh KD.
Cho tam giác ABC, tia phân giác AD. BD=2, DC=4. Đường trung trực của AD cắt BC tại K. Tính KD.
bn ơi thế, AD là phân giác hay trung trực,...
Cho tam giác ABC, tia phân giác BD. BD = 2, DC = 4. Đường trung trực của AC cắt BC tại K, Tính KD.
Cho tam giác ABC vuông tại A có góc B =60°
a. Tính góc C so sánh các cạnh của tam giác ABC
b.trên BC lấy Dsao cho BD =BA vẽ tia phân giác BI . Chứng minh BI là trung trực của AD
c. Chứng minh ID là trung trực của BC
d.ID cắt AB tại M . Chứng minh tam giác MBD đều
Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cm
a)Tính AH
b)CM: Tam giác ABH=tam giác ACH
c)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE cân
d)CM:AH là trung trực của DE
Bài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại H
a)Tam giác ADB=tam giác ACE
b)Tam giác AHC cân
c)ED song song BC
d)AH cắt BC tại K, trên HK lất M sao cho K là trung điểm của HM.CM tam giác ACM vuông
Bài 3:Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc với BC(E thuộc BC.Gọi F là giao điểm của BA và ED.CMR:
a)tam giác ABD=tam giác EBD
b)Tam giác ABE là tam giác cân
c)DF=DC
Bài 4: Cho tam giác ABC có góc A=90 độ,AB=8cm,AC=6cm
a) Tính BC
b)Trên cạnh AC lấy điểm E sao cho AE=2cm,trên tia đối của tia AB lấy D sao cho AD=AB.CM: tam giác BEC=tam giác DEC
c)CM: DE đi qua trung điểm cạnh BC
Cho tam giác ABC vuông tại A và AB =12cm, AC =16cm .Đường phân giác góc A cắt BC tại D
a) Tính BC ,BD vad CD ĐS: BC =20cm , BD≈8,6cm ,DC≈11,4 cm
b) Vẽ đường cao AH .Tính AH ,HD và AD ĐS: AH ≈9.6 cm , HD ≈1,4cm , AD ≈9,7 cm
Lời giải:
a. Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20$ (cm)
Áp dụng tính chất đường phân giác:
$\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}$
Mà: $BD+DC=BC=20$ nên:
$BD=20:(3+4).3=\frac{60}{7}$ (cm)
$CD= 20:(3+4).4=\frac{80}{7}$ (cm)
b.
$AH=2S_{ABC}:BC=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{12^2-9,6^2}=7,2$ (cm)
$HD = BD-BH = \frac{60}{7}-7,2=\frac{48}{35}$ (cm)
$AD = \sqrt{AH^2+HD^2}=\sqrt{9,6^2+(\frac{48}{35})^2}=\frac{48\sqrt{2}}{7}$ (cm)
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=12^2+16^2=20^2\)
=>\(BC=20\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{12}=\dfrac{CD}{16}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)
mà BD+CD=BC=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
=>\(BD=\dfrac{20}{7}\cdot3=\dfrac{60}{7}\left(cm\right);CD=\dfrac{20}{7}\cdot4=\dfrac{80}{7}\left(cm\right)\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot20=12\cdot16=192\)
=>\(AH=\dfrac{192}{20}=9,6\left(cm\right)\)
Ta có: ΔAHB vuông tại H
=>\(HB^2+AH^2=AB^2\)
=>\(HB^2=12^2-9,6^2=51,84\)
=>\(HB=\sqrt{51,84}=7,2\left(cm\right)\)
=>HC=BC-HB=12,8(cm)
Vì CD<CH
nên D nằm giữa C và H
=>CD+DH=CH
=>\(DH=12.8-\dfrac{80}{7}=\dfrac{48}{35}\left(cm\right)\)
ΔAHD vuông tại H
=>\(AH^2+HD^2=AD^2\)
=>\(AD^2=\left(\dfrac{48}{35}\right)^2+9,6^2=\dfrac{4608}{49}\)
=>\(AD=\sqrt{\dfrac{4608}{49}}=\dfrac{48\sqrt{2}}{7}\left(cm\right)\)
cho tam giác abc có góc a=80độ goc b=60 độ . trên cach bc lấy đỉêm d sao cho bd=ab tia phân giác góc abc cắt ad tại h và cắt ac tại e gọi flà trung điêm của dc ,af cắt ch tại k
a,cmr be > ad
b, cmr kc=2kh
Cho tam giác ABC vuông tại B đường phân giác AD.Kẻ DH vông góc với AC( D thuộc AC). Gọi K là gia điểm của AB.Chứng minh rằng:
1.1 Tam giác ABD= tam giác ADH
1.2 AD là đường trung trực của đoạn thẳng BH
1.3 BD<DC
1.4 AD vuông góc với KC
Cho tam giác ABC góc A = 90 độ. Đường cao AH gọi D là đi điểm đối xứng B qua H
a/ Tam giác ABC ~ tam giác HBA
b/ Từ C kẻ đường vuông góc AD, cắt AD tại E
C/m: AH.CD=CE.AD
c/Tam giác ABC ~ Tam giác EDC và tính S EDC
d/Biết AH cắt CE tại F; FD cắt AC tại K. C/m KD là phân giác góc HKE