Rút gọn phân thức
M=(\(\dfrac{4}{x-4}\)-\(\dfrac{4}{x+4}\)). \(\dfrac{x^2+8x+16}{32}\)
bài 17 cho biểu thức A=\(\dfrac{x+15}{x^2-9}+\dfrac{2}{x+3}\)
a.rút gọn A
b.tìm x để A có giá trị bằng \(\dfrac{-1}{2}\)
c. tìm số tự nhiên x để A có giá trị nguyên
bài 18 cho biểu thức M=\(\left(\dfrac{4}{x-4}-\dfrac{4}{x+4}\right).\dfrac{x^2+8x+16}{32}\)
a.tìm giá trị x để M=\(\dfrac{1}{3}\)
`B17:`
`a)` Với `x \ne +-3` có:
`A=[x+15]/[x^2-9]+2/[x+3]`
`A=[x+15+2(x-3)]/[(x-3)(x+3)]`
`A=[x+15+2x-6]/[(x-3)(x+3)]`
`A=[3x+9]/[(x-3)(x+3)]=3/[x-3]`
`b)A=[-1]/2<=>3/[x-3]=-1/2<=>-x+3=6<=>x=-3` (ko t/m)
`=>` Ko có gtr nào của `x` t/m
`c)A in ZZ<=>3/[x-3] in ZZ`
`=>x-3 in Ư_3`
Mà `Ư_3={+-1;+-3}`
`@x-3=1=>x=4`
`@x-3=-1=>x=2`
`@x-3=3=>x=6`
`@x-3=-3=>x=0`
________________________________
`B18:`
`a)M=1/3` `ĐK: x \ne +-4`
`<=>(4/[x-4]-4/[x+4]).[x^2+8x+16]/32=1/3`
`<=>[4(x+4)-4(x-4)]/[(x-4)(x+4)].[(x+4)^2]/32=1/3`
`<=>32/[x-4].[x+4]/32=1/3`
`<=>3x+12=x-4`
`<=>x=-8` (t/m)
cho biểu thức \(P=\dfrac{x^2+3x}{x^2-8x+16}:\left(\dfrac{x+4}{x}+\dfrac{1}{x-4}+\dfrac{19-x^2}{x^2-4x}\right)\)
a) rút gọn P
b) tính giá trị của P tại \(x=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
a) \(P=\dfrac{x^2+3x}{x^2-8x+16}:\left(\dfrac{x+4}{x}+\dfrac{1}{x-4}+\dfrac{19-x^2}{x^2-4x}\right)\left(x\ne0,x\ne4\right)\)
\(=\dfrac{x^2+3x}{\left(x-4\right)^2}:\left(\dfrac{x+4}{x}+\dfrac{1}{x-4}+\dfrac{19-x^2}{x\left(x-4\right)}\right)\)
\(=\dfrac{x^2+3x}{\left(x-4\right)^2}:\dfrac{\left(x+4\right)\left(x-4\right)+x+19-x^2}{x\left(x-4\right)}\)
\(=\dfrac{x^2+3x}{\left(x-4\right)^2}:\dfrac{x+3}{x\left(x-4\right)}=\dfrac{x\left(x+3\right)}{\left(x-4\right)^2}.\dfrac{x\left(x-4\right)}{x+3}=\dfrac{x^2}{x-4}\)
b) \(x=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1-\sqrt{3}+1=2\)
\(\Rightarrow P=\dfrac{2^2}{2-4}=-2\)
a)\(ĐKXĐ:\left\{{}\begin{matrix}x\left(x-4\right)\ne0\\\dfrac{x+4}{x}+\dfrac{1}{x-4}+\dfrac{19-x^2}{x^2-4x}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x\ne0\\x\ne-3\end{matrix}\right.\)
\(P=\dfrac{x\left(x+3\right)}{\left(x-4\right)}:\left(\dfrac{x^2-16+x+19-x^2}{x\left(x-4\right)}\right)=\dfrac{x\left(x+3\right)}{\left(x-4\right)^2}.\left(\dfrac{x\left(x-4\right)}{x+3}\right)=\dfrac{x^2}{x-4}\)
b)\(x=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3+1}-\left(\sqrt{3}-1\right)=2\)
thay x=2 vào P ta có \(P=\dfrac{2^2}{2-4}=-2\)
rút gọn các biểu thức sau
a)x-2y-\(\sqrt{x^2-4xy+4y^2}\) d)\(\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}\)
B)\(x^2+\sqrt{x^4-8x^2+16}\) e)\(\sqrt{\left(x^2-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}\)
C)\(2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\)
a) \(x-2y-\sqrt{x^2-4xy+4y^2}\)
\(=x-2y-\sqrt{\left(x-2y\right)^2}\)
\(=x-2y-\left|x-2y\right|\)
TH1: \(x-2y--\left(x-2y\right)\)
\(=x-2y+x-2y\)
\(=2x-4y\)
TH2: \(x-2y-\left(x-2y\right)\)
\(=x-2y-x+2y\)
\(=0\)
b) \(x^2+\sqrt{x^4-8x^2+16}\)
\(=x^2+\sqrt{\left(x^2-4\right)^2}\)
\(=x^2+\left|x^2-4\right|\)
TH1:
\(x^2+-\left(x^2-4\right)\)
\(=x^2-x^2+4\)
\(=4\)
TH2:
\(x^2+\left(x^2-4\right)\)
\(=x^2+x^2-4\)
\(=2x^2-4\)
c) \(2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\) (x>5)
\(=2x-1-\sqrt{\dfrac{\left(x-5\right)^2}{x-5}}\)
\(=2x-1-\sqrt{x-5}\)
d) \(\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}\) (\(x>\sqrt{2}\))
\(=\sqrt{\dfrac{\left(x^2-2\right)^2}{x^2-2}}\)
\(=\sqrt{x^2-2}\)
e) \(\sqrt{\left(x^2-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}\)
\(=\left|x^2-4\right|+\dfrac{x-4}{\sqrt{\left(x-4\right)^2}}\)
\(=\left|x^2-4\right|+\sqrt{\dfrac{\left(x-4\right)^2}{\left(x-4\right)^2}}\)
\(=\left|x^2-4\right|+1\)
TH1:
\(x^2-4+1\)
\(=x^2-3\)
TH2:
\(-\left(x^2-4\right)+1\)
\(=-x^2+4+1\)
\(=-x^2+5\)
a: \(A=x-2y-\sqrt{x^2-4xy+4y^2}\)
=x-2y-|x-2y|
Khi x>=2y thì A=x-2y-x+2y=0
Khi x<2y thì A=x-2y+x-2y=2x-4y
b: \(B=x^2+\sqrt{x^4-8x^2+16}\)
\(=x^2+\left|x^2-4\right|\)
TH1: x>=2 hoặc x<=-2
B=x^2+x^2-4=2x^2-4
TH2: -2<=x<=2
B=x^2+4-x^2=4
c: \(C=2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\)
\(=2x-1-\sqrt{\dfrac{\left(x-5\right)^2}{x-5}}=2x-1-\sqrt{x-5}\)
d: \(D=\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}=\sqrt{\dfrac{\left(x^2-2\right)^2}{x^2-2}}=\sqrt{x^2-2}\)
Cho biểu thức A = \(\left(\dfrac{4x}{x+2}-\dfrac{x^3-8}{x^3+8}.\dfrac{4x^2-8x+16}{x^2-4}\right):\dfrac{16}{x^2-x-6}\)
a) Rút gọn A
b) Tìm x để A < 0
c) Tìm x để A ≥ 5
Rút gọn biểu thức sau
A=\(\dfrac{1}{x-1}\sqrt{75\left(x-1\right)^3}\left(x>1\right)
\)
B=\(5\sqrt{4x}-3\sqrt{\dfrac{100x}{9}}-\dfrac{4}{x}\sqrt{\dfrac{x^3}{4}}\left(x>0\right)
\)
C=\(x-4+\sqrt{16-8x+x^2}\left(x>4\right)\)
Help me
a: \(A=\dfrac{1}{x-1}\cdot5\sqrt{3}\cdot\left|x-1\right|\cdot\sqrt{x-1}\)
\(=\dfrac{5\sqrt{3}}{x-1}\cdot\left(x-1\right)\cdot\sqrt{x-1}=5\sqrt{3}\cdot\sqrt{x-1}\)
b: \(B=10\sqrt{x}-3\cdot\dfrac{10\sqrt{x}}{3}-\dfrac{4}{x}\cdot\dfrac{x\sqrt{x}}{2}\)
\(=10\sqrt{x}-10\sqrt{x}-\dfrac{4\sqrt{x}}{2}=-2\sqrt{x}\)
c: \(C=x-4+\left|x-4\right|\)
=x-4+x-4
=2x-8
\(\dfrac{x^2-16}{x}:\dfrac{x^2-8x+16}{x}\)(x≠0,x≠4)
giúp em rút gọn bài này với
\(=\dfrac{\left(x-4\right)\cdot\left(x+4\right)}{x}\cdot\dfrac{x}{\left(x-4\right)^2}=\dfrac{x+4}{x-4}\)
rút gọn biểu thức \(P=\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\) với x>0; x≠4; x≠9
Ta có: \(P=\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\left(\dfrac{4\sqrt{x}\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}+\dfrac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(=\dfrac{8\sqrt{x}-8x+8x}{\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)}:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{-8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)
\(=\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
Rút gọn biểu thức N=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x}-4}\right):\dfrac{\sqrt{x}+16}{\sqrt{x}+2}\) với x≥0 ; x≠16
\(=\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}+16}=\dfrac{\left(x+16\right)\left(\sqrt{x}+2\right)}{\left(x-16\right)\left(\sqrt{x}+16\right)}\)
1.cho biểu thức A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}-\dfrac{1}{\sqrt{x}-2}\)với(x≥0;x≠4)
a)rút gọn A
b)tính A khi x=6+4\(\sqrt{2}\)
2.cho biểu thức P=\(\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{x-4}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+3\right)\)với x≥0;x≠1;x≠4
a)rút gọn P
b)tìm x để P=-4