Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Tấn Sang g
Xem chi tiết
võ dương thu hà
Xem chi tiết
loancute
Xem chi tiết
Mai Xuân Vinh
Xem chi tiết
Phùng Thành
Xem chi tiết
Tuấn
2 tháng 2 2019 lúc 9:47

dùng kẹp được này 

Uzumaki Naruto
Xem chi tiết
Ha Nguyen
Xem chi tiết
KAl(SO4)2·12H2O
Xem chi tiết
Đỗ Đức Đạt
17 tháng 11 2017 lúc 20:21

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin Wrecking Ball nhận xét

KAl(SO4)2·12H2O
17 tháng 11 2017 lúc 20:22

Đỗ Đức Đạt cop trên Yahoo

Xua Tan Hận Thù
17 tháng 11 2017 lúc 20:23

1...Chia cả hai vế cho xyz ta được 
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz 
<=>3/x + 3/y + 3/z = 4 
<=>1/x + 1/y + 1/z = 4/3 
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z 
+nếu x>=4=> y>=4;z>=4 
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm 
+nếu x=1 => 1+1/y+1/z=4/3 
<=> 1/y+1/z=1/3 
<=> 3(y+z)=yz 
<=> 3y+3z-yz=0 
<=> 3y-yz+3z-9=-9 
<=> y(3-z)-3(3-z)=-9 
<=> (3-z)(3-y)=9 
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương 
mà 9=3*3=1*9=9*1 
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương) 
+nếu x=2 => 1/2+1/y+1/z=4/3 
<=> 1/y+1/z=5/6 
<=> 6(y+z)=5yz 
<=> 6y+6z-5yz=0 
<=> 30y-25yz+30z-36=-36 
<=> 5y(6-5z)-6(6-5z)=-36 
<=> (5z-6)(5y-6)=36 
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương 
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4 
Giải tương tự phần trên ta được 
y=2,z=3 hoặc y=3,z=2 
+nếu x=3 => 1/3+1/y+1/z=4/3 
<=> 1/y+1/z=1 
Giải tương tự phần trên ta được y=z=2 
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)

MK cop nhưng ủng hộ mk nha , mk có lòng trả lời

ngoc bich
Xem chi tiết
Agatsuma Zenitsu
13 tháng 2 2020 lúc 17:51

Ta đưa về dạng: \(\left(2y+1\right)^2=\left(2x^2+x\right)^2+\left(3x+1\right)\left(x+1\right)\)

\(=\left(2x^2+x+1\right)^2-x\left(x-2\right)\)

Khi:\(\left(3x+1\right)\left(x+1\right)\)dương thì: \(\left(2y+1\right)^2>\left(2x^2+x\right)^2\)

Khi: \(x\left(x-2\right)\) dương thì: \(\left(2y+1\right)^2< \left(2x^2+x+1\right)^2\)

\(\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}\)\(\left(2x^2+x\right)^2< 4x^4+4x^3+4x^2+4x+1< \left(2x^2+x+1\right)^2\)

Mà: \(2x^2+x\) và \(2x^2+x+1\)là hai số liên tiếp nên trường hợp này không có nghiệm nguyên.

Vậy muốn có nghiệm nguyên thì: \(-1\le x\le2\Rightarrow x=0;1;1;2\)

Vậy pt có nghiệm nguyên \(\left(x,y\right)=\left\{\left(-1;0\right);\left(-1;-1\right);\left(0;0\right);\left(0;-1\right);\left(2;5\right);\left(2;-6\right)\right\}\)

Khách vãng lai đã xóa
T.Anh 2K7(siêu quậy)(тoá...
13 tháng 2 2020 lúc 17:55

\(\Leftrightarrow y^2+y=\left(x^4+x^3\right)+\left(x^2+x\right)\)

\(\Leftrightarrow y\left(y+1\right)=x^3\left(x+1\right)+x\left(x+1\right)\)

\(\Leftrightarrow y\left(y+1\right)=\left(x^3+x\right)\left(x+1\right)\)

\(\Leftrightarrow y\left(y+1\right)=\left[x\left(x+1\right)\right]^2\)

Mà (y,y+1)=1

\(\Rightarrow y\in\left\{0;-1\right\}\)

\(\Rightarrow\left[x\left(x+1\right)\right]^2=0\Rightarrow x\in\left\{-1;0\right\}\)

Vậy\(\left(x,y\right)\in\left\{\left(0;0\right),\left(-1;0\right),\left(-1;-1\right),\left(0;-1\right)\right\}\)

mk làm hơi tắt sorry

Khách vãng lai đã xóa
T.Anh 2K7(siêu quậy)(тoá...
13 tháng 2 2020 lúc 17:57

mk làm sai rồi,thứ lỗi

Khách vãng lai đã xóa