Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NOOB
Xem chi tiết
T . Anhh
9 tháng 3 2023 lúc 17:06

a) \(2x^2-5x+1=0\)

\(\Delta=b^2-4ac\Rightarrow\left(-5\right)^2-4.2.1=17>0\)

Phương trình có 2 nghiệm phân biệt:

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{17}}{2.2}=\dfrac{5+\sqrt{17}}{4}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{17}}{2.2}=\dfrac{5-\sqrt{17}}{4}\)

___________________________________________________

b) \(4x^2+4x+1=0\)

\(\Delta=b^2-4ac\Rightarrow4^2-4.4.1=0\)

Vậy phương trình có nghiệm kép:

___________________________________________________

c) \(5x^2-x+2=0\)

\(\Delta=b^2-4a\Rightarrow\left(-1\right)^2-4.5.2=-39\)

Vậy phương trình vô nghiệm.

⭐Hannie⭐
9 tháng 3 2023 lúc 17:55

\(a,2x^2-5x+1=0\)

\(\Delta=-b^2-4ac\)

\(\Delta=25-8\)

\(\Delta=17\)

Vậy phương trình có `2` nghiệm phân biệt  :

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+\sqrt{17}}{4} \)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{5-\sqrt{17}}{4}\)

\(b,4x^2+4x+1=0\)

\(\Delta=b^2-4ac\)

\(\Delta=16-16=0\)

Vậy phương trình có nghiệm kép :

\(x=\dfrac{-b}{2a}=-\dfrac{4}{8}=-\dfrac{1}{2}\)

\(c,5x^2-x+2=0\)

\(\Delta=1-40\)

\(\Delta=-39\)

Vậy phương trình vô nghiệm .

 

 

Hạnh Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 7 2023 lúc 20:06

a: x^2-7x+13=0

Δ=(-7)^2-4*1*13=49-52=-3<0

=>PTVN

b: -5x^2+5x-1.25=0

=>4x^2-4x+1=0

=>(2x-1)^2=0

=>2x-1=0

=>x=1/2

d: 2x^2+3x+1=0

=>(x+1)(2x+1)=0

=>x=-1 hoặc x=-1/2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 1 2019 lúc 17:57

ĐỪng hỏi tên
Xem chi tiết
Hoàng Phú Huy
29 tháng 3 2018 lúc 8:32

a) Ta có:Δ =(-7)2 -4.2.2 =49 -16 =33 >0

Phương trình có 2 nghiệm phân biệt .Theo hệ thức Vi-ét, ta có:

x1 + x2 =-b/a =7/2 ;x1x2 =c/a =2/2 =1

b) c = -16 suy ra ac < 0

Phương trình có 2 ghiệm phân biệt .Theo hệ thức Vi-ét, ta có:

x1 + x2 =-b/a =-2/5 ;x1x2 =c/a =-16/5

c) Ta có: Δ’ = 22 – (2 -√3 )(2 + √2 ) =4 -4 - 2√2 +2√3 +√6

= 2√3 - 2√2 +√6 >0

Phương trình 2 ghiệm phân biệt .Theo hệ thức Vi-ét, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

d) Ta có : Δ = (-3)2 -4.1,4.1,2 =9 – 6,72 =2,28 >0

Phương trình có 2 ghiệm phân biệt .Theo hệ thức Vi-ét, ta có:

x1 + x2 = -b/a = 3/(1.4) = 30/14 = 15/7 ; x1x2 = c/a = (1.2)/(1.4) = 12/14 = 6/7

Ta có: Δ = 12 -4.5.2 = 1 - 40 = -39 < 0

Minh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 3 2022 lúc 10:35

a: \(\Delta=2^2-4\cdot1\cdot\left(-30\right)=124\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-2-2\sqrt{31}}{2}=-1-\sqrt{31}\\x_2=-1+\sqrt{31}\end{matrix}\right.\)

b: \(2x^2-3x-5=0\)

\(\Leftrightarrow2x^2-5x+2x-5=0\)

=>(2x-5)(x+1)=0

=>x=5/2 hoặc x=-1

Nguyễn Ngọc Huy Toàn
8 tháng 3 2022 lúc 10:37

a.\(x^2+2x-30=0\)

\(\Delta=2^2-4.\left(-30\right)=4+120=124>0\)

=> pt có 2 nghiệm

\(\left\{{}\begin{matrix}x=\dfrac{-2+\sqrt{124}}{2}=\dfrac{-2+2\sqrt{31}}{2}=-1+\sqrt{31}\\x=\dfrac{-2-\sqrt{124}}{2}=-1-\sqrt{31}\end{matrix}\right.\)

b.\(2x^2-3x-5=0\)

Ta có: a-b+c=0

\(\Rightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{5}{2}\end{matrix}\right.\)( vi-ét )

Thư Vũ
Xem chi tiết
Nguyen Vi
1 tháng 11 2021 lúc 12:19

a) 5x^2. (3x^2 - 7x + 2)

= 5x^2. 3x^2 + 5x^2. (- 7x) + 5x^2. 2

= 15x^4 - 35x^3 + 10x^2

b) (2x^2 - 3x). (5x^2 - 5x + 1)

= 2x^2. 5x^2 - 2x^2. 5x + 2x^2. 1 - 3x. 5x^2 + 3x. 5x^2 + 3x. 5x - 3x. 1

= 10x^4 - 25x^3 + 17x^2 - 3x

người ngoài hành tinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 3 2022 lúc 21:48

a: =>7-x=0

hay x=7

b: \(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x+5\right)\left(3x-8\right)=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2};-5;\dfrac{8}{3}\right\}\)

người ngoài hành tinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 3 2022 lúc 21:18

a: =>-x+7=0

hay x=7

b: \(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\left(x+5\right)\left(3x-8\right)=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2};-5;\dfrac{8}{3}\right\}\)

viethai0704
Xem chi tiết

\(a\\ -5x^2+3x.\left(x+2\right)=-5x^2+3x^2+6x=-2x^2+6x\\ b\\ -2x.\left(1-x^2\right)-2x^3=-2x+2x^3-2x^3=-2x\\ c\\ 4x.\left(x-1\right)-4.\left(x^2+2x-1\right)\\ =4x^2-4x-4x^2-8x+4=-12x+4\)

\(d\\ 6x^3-2x^2.\left(-x^2-3x\right)=6x^3+2x^4+6x^3=2x^4+12x^3\\ e\\ 3x.\left(x-1\right)-\left(1+2x\right).5x\\ =3x^2-3x-5x-10x^2=-7x^2-8x\\ f\\ -5x^2-\left(x-6\right).\left(-2x^2\right)=-5x^2+2x^3-12x^2=2x^3-17x^2\)

Fan Sammy
Xem chi tiết
ILoveMath
1 tháng 1 2022 lúc 20:45

\(a,x^2-6x+5=0\\ \Rightarrow\left(x^2-5x\right)-\left(x-5\right)=0\\ \Rightarrow x\left(x-5\right)-\left(x-5\right)=0\\ \Rightarrow\left(x-1\right)\left(x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

\(b,2x^2+4x-8=0\\ \Rightarrow x^2+2x-4=0\\ \Rightarrow\left(x^2+2x+1\right)-5=0\\ \Rightarrow\left(x+1\right)^2-\sqrt{5^2}=0\\ \Rightarrow\left(x+1+\sqrt{5}\right)\left(x+1-\sqrt{5}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1-\sqrt{5}\\x=-1+\sqrt{5}\end{matrix}\right.\)

\(c,4y^2-4y+1=0\\ \Rightarrow\left(2y-1\right)^2=0\\ \Rightarrow2y-1=0\\ \Rightarrow y=\dfrac{1}{2}\)

\(d,5x^2-x+2=0\)

Ta có:\(\Delta=\left(-1\right)^2-4.5.2=1-40=-39\)

Vì \(\Delta< 0\Rightarrow\) pt vô nghiệm