Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
5ryr
Xem chi tiết
o0o I am a studious pers...
7 tháng 2 2017 lúc 15:52

Cái đề này sao sao ý :

\(a^8\ge a^7vs\forall a\)

\(b^8\ge b^7vs\forall b\)

\(\Rightarrow a^8+b^8\ge a^7+b^7vs\forall ab\)

Đâu cần a + b =2 âu

5ryr
7 tháng 2 2017 lúc 15:58

Bn làm sai rùi 

D O T | ☪ Alan Wa...
Xem chi tiết
Phùng Minh Quân
26 tháng 10 2019 lúc 5:39

Cần CM : \(a^{k+1}-a^k\ge a-1\)\(\left(k\inℕ\right)\) (1) 

\(\Leftrightarrow\)\(a^k\left(a-1\right)-\left(a-1\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-1\right)\left(a^k-1\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-1\right)^2\left(a^{k-1}-a^{k-2}+a^{k-3}-a^{k-4}+...+1\right)\ge0\) ( đúng ) 

=> (1) đúng 

Áp dụng vào bài toán,với k = 7 ta có \(\hept{\begin{cases}a^8-a^7\ge a-1\\b^8-b^7\ge a-1\end{cases}}\Rightarrow a^8+b^8-a^7-b^7\ge a+b-2=0\)

\(\Leftrightarrow\)\(a^8+b^8\ge a^7+b^7\)

Dấu "=" xảy ra khi \(a=b=1\)

Khách vãng lai đã xóa
Nguyễn Khang
26 tháng 10 2019 lúc 18:42

Thay b = 2 - a vào phân tích ta được:

VT - VP = 4 (a - 1)^2 (a^6 - 6 a^5 + 36 a^4 - 104 a^3 + 176 a^2 - 160 a + 64) 

Khách vãng lai đã xóa
Nguyễn Khang
26 tháng 10 2019 lúc 18:42

Ối nó ko hiện ảnh nên chị vào thống kê hỏi đáp của em xem nha!

Khách vãng lai đã xóa
nguyễn thị phượng
Xem chi tiết
Vũ Ngọc Diệp
Xem chi tiết
Tran Le Khanh Linh
24 tháng 7 2020 lúc 16:14

ta có \(\frac{2+a}{1+b}+\frac{1-2b}{1+2b}=\frac{1+a+1}{1+a}+\frac{2-\left(1+2b\right)}{1+2b}=\frac{1}{1+a}+\frac{2}{1+2b}\)

sử dụng bất đẳng thức Cauchy-Schwwarz ta có:

\(\frac{1}{1+a}+\frac{2}{1+2b}=\frac{1}{1+a}+\frac{1}{\frac{1}{2}+b}\ge\frac{4}{1+a+\frac{1}{2}+b}\ge\frac{4}{1+\frac{1}{2}+2}=\frac{8}{7}\)do a+b =<2

dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b=2\\1+a=\frac{1}{2}+b\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{3}{4}\\b=\frac{5}{4}\end{cases}}}\)

Khách vãng lai đã xóa
Trần Thiên Kim
Xem chi tiết
Akai Haruma
20 tháng 7 2017 lúc 23:37

Lời giải

Cách giải đơn giản nhất là khai triển

\(3(a^8+b^8+c^8)\geq (a^3+b^3+c^3)(a^5+b^5+c^5)\)

\(\Leftrightarrow 2(a^8+b^8+c^8)\geq a^5(b^3+c^3)+b^5(c^3+a^3)+c^5(a^3+b^3)\)

\(\Leftrightarrow (a^3-b^3)(a^5-b^5)+(b^3-c^3)(b^5-c^5)+(c^3-a^3)(c^5-a^5)\geq 0(\star)\)

Xét \((a^3-b^3)(a^5-b^5)=(a-b)^2(a^2+b^2)(a^4+a^3b+a^2b^2+ab^3+b^4)\geq 0\) với mọi \(a,b>0\)

và tương tự với các biểu thức còn lại.

Suy ra BĐT \((\star)\) luôn đúng.

Ta có đpcm

Đây chính là một dạng của BĐT Chebyshev:

Với dãy số thực \(a_1\leq a_2\leq ....\leq a_n\) . Nếu tồn tại dãy số thực\(b_1\leq b_2\leq .... \leq b_n\) thì \(n(a_1b_1+a_2b_2+....+a_nb_n)\geq (a_1+a_2+...+a_n)(b_1+b_2+...+b_n)\)

Akai Haruma
21 tháng 7 2017 lúc 0:13

Câu 2:

Tương tự câu 1 thôi.

Do \(a+b=2\) nên bài toán tương đương: \(2(a^8+b^8)\geq (a^7+b^7)(a+b)\)

\(\Leftrightarrow a^8+b^8\geq a^7b+ab^7\Leftrightarrow (a^7-b^7)(a-b)\geq 0\)

\(\Leftrightarrow (a-b)^2(a^6+a^5b+....+ab^5+b^6)\geq 0(\star)\)

Xét \(Q=a^6+a^5b+a^4b^2+a^3b^3+a^2b^4+ab^5+b^6\)

\(Q=(a+b)(a^5+b^5)+a^2b^2(a^2+b^2+ab)\)

Dựa vào điều kiện \(a+b=2\) và biến đổi, ta thu được \(Q=16(2-ab)^2-8ab(2-ab)-a^3b^3\)

Đặt \(ab=t\Rightarrow Q=-t^3+24t^2-80t+64\)

\(\Leftrightarrow Q=(1-t)(t-8)^2+7t^2\)

Với mọi \(a,b\in\mathbb{R}\) ta luôn có \(ab\leq \frac{(a+b)^2}{4}\Rightarrow t\leq 1\). Do đó \(Q\geq 0\)

Kéo theo BĐT \((\star)\) luôn đúng, bài toán luôn đúng. Do đó ta có đpcm.

Yeutoanhoc
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 8 2021 lúc 16:54

a. Đề bài sai (thực chất là nó đúng 1 cách hiển nhiên nhưng "dạng" thế này nó sai sai vì ko ai cho kiểu này cả)

Ta có: \(abc=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow abc\ge27\)

\(\Rightarrow a^2+b^2+c^2+5abc\ge a^2+b^2+c^2+5.27>>>>>8\)

b. 

\(4=ab+bc+ca+abc=ab+bc+ca+\sqrt{ab.bc.ca}\le ab+bc+ca+\sqrt{\left(\dfrac{ab+bc+ca}{3}\right)^3}\)

\(\sqrt{\dfrac{ab+bc+ca}{3}}=t\Rightarrow t^3+3t^2-4\ge0\Rightarrow\left(t-1\right)\left(t+2\right)^2\ge0\)

\(\Rightarrow t\ge1\Rightarrow ab+bc+ca\ge3\Rightarrow a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\ge3\)

- TH1: nếu \(a+b+c\ge4\)

Ta có: \(ab+bc+ca=4-abc\le4\)

\(\Rightarrow P=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+5abc\ge4^2-2.4+0=8\)

(Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;2;0\right)\) và các hoán vị)

- TH2: nếu \(3\le a+b+c< 4\)

Đặt \(a+b+c=p\ge3;ab+bc+ca=q;abc=r\)

\(P=p^2-2q+5r=p^2-2q+5\left(4-q\right)=p^2-7q+20\)

Áp dụng BĐT Schur:

\(4=q+r\ge q+\dfrac{p\left(4q-p^2\right)}{9}\Leftrightarrow q\le\dfrac{p^3+36}{4p+9}\)

\(\Rightarrow P\ge p^2-\dfrac{7\left(p^3+36\right)}{4p+9}+20=\dfrac{3\left(4-p\right)\left(p-3\right)\left(p+4\right)}{4p+9}+8\ge8\)

(Dấu "=" xảy ra khi \(a=b=c=1\))

tuân phạm
Xem chi tiết
Nguyễn Tũn
6 tháng 10 2018 lúc 15:12

Câu 2;3;4 dễ quá... bỏ qua!!

Câu 5;6 khó quá ... khỏi làm!!

dễ quá bỏ qua!!, khó quá khỏi làm!!

cứ tiêu chí mày bạn sẽ vượt qua mọi bài toán... và nhanh chóng đạt 1đ.

Nguyễn An
Xem chi tiết
Nguyễn Phương Oanh
Xem chi tiết
tthnew
10 tháng 7 2019 lúc 10:17

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?