Tính
a)\(\frac{2^{12}.13+2^{12}.65}{2^{10}.104}+\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
b)\(\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}\)
c)\(1+2-3-4+5+6-7-8+.....+2009+2010-2011-2012+2013\)
a) \(\frac{2^{12}.13+2^{12}.65}{2^{10}.104}+\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
\(=\frac{2^{10}.\left(13.4+65.4\right)}{2^{10}.104}+\frac{3^9.\left(3.11+3.5\right)}{3^9.16}\)
\(=\frac{312}{104}+\frac{48}{16}\)
=3+3=6
b) \(\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}\)
\(=\frac{1.5.6\left(1+2.2.2+4.4.4+9.9.9\right)}{1.3.5\left(1+2.2.2+4.4.4+9.9.9\right)}\)
\(=\frac{1.5.6}{1.3.5}\)
\(=2\)
c) 1+2-3-4+5+6-7-8+...+2009+2010-2011-2012+2013
Nhận xét:Giá trị tuyệt đối của hai số liền nhau hơn kém nhau 1 đơn vị
=> Tổng trên có 2013-1+1=2013(Số hạng)
Nhóm 4 số vào một nhóm, ta được 2013:4=503 nhóm (thừa 1 số)
=>1+2-3-4+5+6-7-8+...+2009+2010-2011-2012+2013
=1+(2-3-4+5)+(6-7-8+9)+...+(2010-2011-2012+2013)
=1+0+0+...+0 (có 503 số 0)
=1+0.503
=1+0
=1
Tính giá trị của các biểu thức sau một cách hợp lý:
a)A=\(\frac{3^{10}.11+3^{10}.5}{3^9.2^4+2^{10}.13}+\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
b)B=\(\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{3+\frac{3}{13}+\frac{3}{169}+\frac{3}{91}}{7+\frac{7}{13}+\frac{7}{169}+\frac{7}{91}}\)
Tính:
a, A =\(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
b, B = \(\frac{3737.43-4343.37}{2+4+6+...+100}\)
c, D = \(\frac{2^{12}.13+2^{12}.65}{2^{10}.104}+\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
(Các bn giải chi tiết giúp mik nha)
b, \(3737.43-4343.37=\left(37.101\right).43-\left(43.101\right).37=0\)
suy ra B = 0
c, \(D=\frac{2^{12}\left(13+65\right)}{2^{10}.104}+\frac{3^{10}\left(11+5\right)}{3^9.2^4}=\frac{2^{12}.78}{2^{10}.104}+\frac{3^{10}.16}{3^9.2^4}\)
\(=\frac{2^{12}.2.39}{2^{10}.2^3.13}+\frac{3^{10}.2^4}{3^9.2^4}=\frac{39}{13}+3=6\)
tính :
a, \(A=\dfrac{0,75-0,6+\dfrac{3}{7}+\dfrac{3}{13}}{2,75-2,2+\dfrac{11}{7}+\dfrac{11}{13}}\)
b, \(B=\dfrac{2^{12}.13+2^{12}.65}{2^{10}.104}+\dfrac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
a. \(A=\dfrac{0,75-0,6+\dfrac{3}{7}+\dfrac{3}{13}}{2,75-2,2+\dfrac{11}{7}+\dfrac{11}{13}}=\dfrac{3\left(0,25-0,2+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11\left(0,25-0,2+\dfrac{1}{7}+\dfrac{1}{13}\right)}=\dfrac{3}{11}\)
Vậy \(A=\dfrac{3}{11}\)
b. \(B=\dfrac{2^{12}\cdot13+2^{12}\cdot65}{2^{10}\cdot104}+\dfrac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}=\dfrac{2^{12}\left(13+65\right)}{2^{10}\cdot104}+\dfrac{3^{10}\left(11+5\right)}{3^9\cdot2^4}=\dfrac{2^{12}\cdot78}{2^{10}\cdot104}+\dfrac{3^{10}\cdot16}{3^9\cdot16}=\dfrac{2^2\cdot3}{1\cdot4}+3=\dfrac{12}{4}+3=3+3=6\)
Vậy \(B=6\)
\(A=\dfrac{0.75-0.6+\dfrac{3}{7}+\dfrac{3}{13}}{2.75-2.3+\dfrac{11}{7}+\dfrac{11}{13}}\)
\(A=\dfrac{\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}}{\dfrac{11}{4}-\dfrac{11}{5}+\dfrac{11}{7}+\dfrac{11}{13}}\)
\(A=\dfrac{3.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{11}+\dfrac{1}{13}\right)}{11.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{11}+\dfrac{1}{13}\right)}\)
\(A=\dfrac{3}{11}\)
So Sánh: B = \(\frac{^{3^{10}.11+3^{10}.5}}{3^9.2^4}\) và C= \(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
Ta có:
B=\(\frac{3^{10}.\left(11+5\right)}{3^9.2^4}\) = \(\frac{3^{10}.16}{3^9.2^4}\)= \(\frac{3^9.3.16}{3^9.16}\)= 3
C=\(\frac{2^{10}.\left(13+65\right)}{2^8.104}\) =\(\frac{2^{10}.78}{2^8.104}\) = \(\frac{2^8.2^2.78}{2^8.104}\)= \(\frac{4.78}{104}\) = \(\frac{4.78}{4.26}\)=\(\frac{78}{26}\)=3
=>B=C
Tính giá trị biểu thức sau:
1/ \(\frac{9.5^{20}.27^9-3.9^{15}.25^9}{7.3^{29}.125^6-3.3^9.15^{19}}\).
2/ \(\frac{5.\left(2^2.3^2\right)^9.\left(2^2\right)^6-2.\left(2^2.3\right)^{14}.3^6}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
3/ \(\frac{2^{12}.13+2^{12}.65}{2^{10}.104}+\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
4/ \(\frac{5.4^{15}-9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)
5/ \(\frac{13.4^6.\left(28\frac{7}{13}-27\frac{5}{18}\right)}{59.2^{12}\left(\frac{5}{14}+\frac{5}{84}+\frac{5}{204}+\frac{5}{374}\right)}\)
Tặng người giải mỗi ngày ba điểm hđ :)
1/ \(\frac{9.5^{20}.27^9-3.9^{15}.25^9}{7.3^{29}.125^6-3.3^9.15^{19}}\)
\(=\frac{5^{20}.3^{29}-3^{31}.5^{18}}{7.3^{29}.5^{18}-3^{29}.5^{19}}=\frac{3^{29}.5^{18}.\left(25-9\right)}{3^{29}.5^{18}.\left(7-5\right)}=\frac{16}{2}=8\)
CÁC BÀI CÒN LẠI TƯƠNG TỰ HẾT NHÉ E
\(\frac{7256.4375-725}{3650+4375.7255}\)
\(\frac{3^{10}.11+3^{10}.5;}{3^9.2^4}\)\(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
\(\left(125^3.7^5-175^5.5\right):2001^{2002}\)
\(\frac{7256.4375-725}{4375.7255+3650}=\frac{\left(7255+1\right).4375-725}{4375.7255+3650}=\frac{7255.4375+4375-725}{7255.4375+3650}=\frac{7255.4375+3650}{7255.4375+3650}=1\)
\(\frac{3^{10}.11+3^{10}.5}{3^9.2^4}=\frac{3^{10}\left(11+5\right)}{3^9.2^4}=\frac{3.16}{16}=3\)
\(\frac{2^{10}.13+2^{10}.65}{2^8.104}=\frac{2^{10}\left(13+65\right)}{2^8.104}=\frac{2^2.78}{26.2^2}=\frac{78}{26}=3\)
\(\left(125^3.7^5-175^5.5\right):2001^{2002}\) ( bạn xem lại đề xem sai đâu ko nhé )
Để Thiên giải câu 3 cho:
(1253.75 -1755;5):20012001
\(=\left[\left(5^3\right)^3.7^5-175^5:5\right]:2001^{2002}\)
\(=\left(5^9.7^5-175:5\right):2001^{2002}\)
\(=\left(5^5.5^4.7^4.7-175^4.175:5\right):2001^{2002}\)
\(=\left(5^5.35^4.7-175^4.35\right):2001^{2002}\)
\(=\left(5^4.35^4.5.7-175^4.35\right):2001^{2002}\)
\(=\left(175^4.35-175^4.35\right):2001^{2002}\)
\(=0:2001^{2002}\)
\(=0\)
tính giá trị của các biểu thức:
a)A=\(\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
b)B=\(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
c)C=\(\frac{4^9.36+64^4}{16^4.100}\)
a)\(A=\frac{3^{10}.11+3^{10}.5}{3^9.2^4}=\frac{3^{10}\left(11+5\right)}{3^9.2^4}=\frac{3.16}{2^4}=\frac{3.2^4}{2^4}=3\)
b)\(B=\frac{2^{10}.13+2^{10}.65}{2^8.104}=\frac{2^{10}\left(13+65\right)}{2^8.2^3.13}=\frac{2^{10}.78}{2^{11}.13}=3\)
c)\(C=\frac{4^9.36+64^4}{16^4.100}=\frac{2^{18}.2^2.3^2+2^{24}}{2^{16}.2^2.5^2}=\frac{2^{20}\left(3^2+2^4\right)}{2^{18}.5^2}=\frac{2^2.25}{25}=4\)
A=\(\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
B=\(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
C=\(\frac{72^3.54^2}{108^4}\)
D=\(\frac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\)
Gợi ý
bn thực hiện phép tính tử mẫu bình thường , khi ra nhưng số trùng nhau bn gạch ra nháp cho đến nhưng số tối giản là ra nha
chúc bn
học tốt
A = \(\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
= \(\frac{3^{10}\left(11+5\right)}{3^9.2^4}\)
= \(\frac{3^{10}.16}{3^9.2^4}\)
= \(\frac{3^{10}.2^4}{3^9.2^4}=3\)
B = \(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
= \(\frac{2^{10}\left(13+65\right)}{2^8.104}\)
= \(\frac{2^{10}.78}{2^8.104}\)
= \(\frac{2^{10}.13.2.3}{2^8.2^3.13}\)
= \(\frac{2^{11}.13.3}{2^{11}.13}=3\)
C = \(\frac{72^3.54^2}{108^4}\)
= \(\frac{\left(2^3.3^2\right)^3.\left(2.3^3\right)^2}{\left(2^2.3^3\right)^4}\)
= \(\frac{2^9.3^6.2^2.3^6}{2^8.3^{12}}\)
= \(\frac{2^{11}.3^{12}}{2^8.3^{12}}\)
= \(2^3=8\)