cho a,b,n thuoc N*. Hãy so sánh (a+n)/(b+n) với a/b
Bài 4: a) Cho biết a/b<c/d với a, b, c, d thuoc N * . Hãy so sánh a + c/ b + d và c / d
Cho A = \(\dfrac{n^9+1}{n^{10}+1}\) và B = \(\dfrac{n^8+1}{n^9+1}\) trong đó n\(\in\)N; n>1. Hãy so sánh nghịch đảo của A và B rồi so sánh A với B
A = \(\dfrac{n^9+1}{n^{10}+1}\)
\(\dfrac{1}{A}\) = \(\dfrac{n^{10}+1}{n^9+1}\) = n - \(\dfrac{n-1}{n^9+1}\)
B = \(\dfrac{n^8+1}{n^9+1}\)
\(\dfrac{1}{B}\) = \(\dfrac{n^9+1}{n^8+1}\) = n - \(\dfrac{n-1}{n^8+1}\)
Vì n > 1 ⇒ n - 1> 0
\(\dfrac{n-1}{n^9+1}\) < \(\dfrac{n-1}{n^8+1}\)
⇒ n - \(\dfrac{n-1}{n^9+1}\) > n - \(\dfrac{n-1}{n^8+1}\)⇒ \(\dfrac{1}{A}>\dfrac{1}{B}\)
⇒ A < B
Cho a, b, n thuộc N* và a< b . Hãy so sánh a+n/ b+n với a / b . Giúp nha =)) Cần gấp lắm ạ
Vì a<b => \(\frac{a+n}{b+n}>\frac{a}{b}\)
tim x thuoc n: 34.3^n :9=37
tim x thuoc n: 9<3^n<27
Tim chu so tan cung cua 360
hãy so sánh a=1+3+3^2+3^3+3^4+35+36 và B=37-1
a/ 34 . 3n : 9 = 34 => 34 . 3n = 34 x 9 => 34 . 3n = 306 => 3n = 306 : 34 => 3n = 9 => n = 2
b/ 9 < 3n < 27 => 32 < 3n < 33 => 2 < n < 3
Mà: n thuộc N => n không tồn tại
c/ Chữ số tận cùng của 360 là 0
d/ Ta có: A = 1 + 3 + 32 + 33 + 34 + 35 + 36
=> 3A = 3 + 32 + 33 + 34 + 35 + 36 + 37
=> 3A - A = 2A = (3 + 32 + 33 + 34 + 35 + 36 + 37) - (1 + 3 + 32 + 33 + 34 + 35 + 36 ) = 3 + 32 + 33 + 34 + 35 + 36 + 37 - 1 - 3 - 32 - 33 - 34 - 35 - 36
=> 2A = 37 - 1 => A = (37 - 1) : 2 < 37 - 1 = B
=> A < B
a, Cho a,b,n ϵ N* . Hãy so sánh \(\dfrac{a+n}{b+n}và\dfrac{a}{b}\)
b, Cho A= \(\dfrac{10^{11}-1}{10^{12}-1};B=\dfrac{10^{10}+1}{10^{11}+1}.\) So sánh A và B
Lời giải:
a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)
Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$
Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$
Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$
b) Rõ ràng $10^{11}-1< 10^{12}-1$.
Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$
Áp dụng kết quả phần a:
$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$
Cho a, b, n thuộc N*. Hãy so sánh a+n/b+n và a/b
a/ Cho a b R , , biết a > b . Hãy so sánh 2020a - 3 với 2020b – 3
. b/ Cho m,n R , biết: 50 - 2020m < 50 - 2020n. Hãy so sánh m và n.
Giúp mình với ạ
a) Vì \(a>b\)\(\Rightarrow2020a>2020b\)
\(\Rightarrow2020a-3>2020b-3\)
b) Vì \(50-2020m< 50-2020n\)\(\Rightarrow2020m>2020n\)
\(\Rightarrow m>n\)
câu 1 : a, Cho a, b ,n thuộc N* . Hãy so sánh a+n trên b +n
b, Cho A =10 mũ 11 -1 trên 10 mũ 12 - 1 ; B = 10 mũ 10 + 1 trên 10 mũ 11 = 1 >Hãy so sánh A và B