Tính giá trị biểu thức:
M=2x4-5x3+2x2-x+3.
a) Khi x=3.
b)Khi x=-3.
Câu 3: Cho biểu thức:
M= \(\dfrac{x^2}{x^2+2x}+\dfrac{2}{x+2}+\dfrac{2}{x}\) (với \(x\ne0\) và \(x\ne2\))
a, Rút gọn biểu thức M
b, Tính giá trị của biểu thức M khi \(x=-\dfrac{3}{2}\)
\(M=\dfrac{x^2}{x\left(x+2\right)}+\dfrac{2x}{x\left(x+2\right)}+\dfrac{2\left(x+2\right)}{x\left(x+2\right)}\)
\(=\dfrac{x^2+2x+2x+4}{x\left(x+2\right)}=\dfrac{x^2+4x+4}{x\left(x+2\right)}=\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x+2}{x}\)
Khi \(x=-\dfrac{3}{2}\Rightarrow M=\dfrac{-\dfrac{3}{2}+2}{-\dfrac{3}{2}}=-\dfrac{1}{3}\)
Bài 1: Làm tính chia
a) (5x3-14x2+12x+8):(x+2)
b) (2x4- 3x3+4x2+1): (x2-1)
Bài 2: Tìm a để phép chia là phép chia hết
11x2 - 5x - a chia hết cho x + 5
Bài 3: Tìm giá trị nguyên của n để giá trị của biểu thức 2n2 + n – 7 chia hết cho giá trị của biểu thức n – 2
Bài 3:
Ta có: \(2n^2+n-7⋮n-2\)
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
42. Cho A = x² - 3x - 1, B = 2x2-x-3, C= 3x²+ 5x - 1.
Tính A - B + C rồi tính giá trị của biểu thức với x = 1 2
43. Cho A = 2x(x + 1)(x-3)-(2x-1)(3x-1) + 3(3x² + x + 1).
a) Rút gọn biểu thức A.
b) Tìm thương và dư khi chia A cho 2x − 1.
c) Tìm giá trị nguyên của x để giá trị của biểu thức A chia hết cho giá trị của biểu thức 2x-1.
44. Tìm nghiệm của các đa thức :
a) 3x-7;
b) 2x² + 9;
\(Bài.44:\\ a,3x-7=0\\ \Leftrightarrow3x=7\\ \Leftrightarrow x=\dfrac{7}{3}\\ b.2x^2+9=0\\ \Leftrightarrow x^2=-\dfrac{9}{2}\left(vô.lí\right)\\ \Rightarrow Không.có.x.thoả.mãn\)
43:
a: \(A=2x\left(x^2-2x-3\right)-6x^2+5x-1+9x^2+3x+3\)
\(=2x^3-4x^2-6x+3x^2+8x+2\)
\(=2x^3-x^2+2x+2\)
b: \(\dfrac{A}{2x-1}=\dfrac{x^2\left(2x-1\right)+2x-1+3}{2x-1}=x^2+1+\dfrac{3}{2x-1}\)
Thương là x^2+1
Dư là 3
c: A chia hết cho 2x-1
=>3 chia hết cho 2x-1
=>2x-1 thuộc {1;-1;3;-3}
=>x thuộc {1;0;2;-1}
cho 2 đa thức
P(x)=5x3+3-3x2+x4-2x-2+2x2+x
Q(x)=2x4+x2+2x+2-3x2-5x+2x3-x4
a)thu gọn và sắp xếp các hạng tử của 2 đa thức trên theo thứ tự giảm dần của biểu thức
b) tính P(x)-Q(x)
`a,`
`P(x)=5x^3+3-3x^2+x^4-2x-2+2x^2+x`
`P(x)=x^4+5x^3+(-3x^2+2x^2)+(-2x+x)+(3-2)`
`P(x)=x^4+5x^3-x^2-x+1`
`Q(x)=2x^4+x^2+2x+2-3x^2-5x+2x^3-x^4`
`Q(x)=(2x^4-x^4)+2x^3+(x^2-3x^2)+(2x-5x)+2`
`Q(x)=x^4+2x^3-2x^2-3x+2`
`b,`
`P(x)-Q(x)=(x^4+5x^3-x^2-x+1)-(x^4+2x^3-2x^2-3x+2)`
`P(x)-Q(x)= x^4+5x^3-x^2-x+1-x^4-2x^3+2x^2+3x-2`
`P(x)-Q(x)=(x^4-x^4)+(5x^3-2x^3)+(-x^2+2x^2)+(-x+3x)+(1-2)`
`P(x)-Q(x)=3x^3+x^2+2x-1`
b) Thực hiện phép chia đa thức (2x4 – 5x3 + 2x2 +2x - 1) cho đa thức (x2 – x - 1)
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
b) Tìm a để đa thức x^4 - x^3 + 6x^2 chia hết cho đa thức x^2 - x + 5
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
Bài 1:
a)Thực hiện phép chia đa thức (2x4 – 5x3 + 2x2 +2x - 1) cho đa thức (x2 – x - 1)
b)Tìm a để đa thức x^4-x^3+6x^2-x+a chia hết cho đa thức x^2-x+5
a: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
Tính giá trị của biểu thức B = x 6 – 2 x 4 + x 3 + x 2 – x khi x 3 – x = 6
A. 36
B. 42
C. 48
D. 56
B = x 6 – 2 x 4 + x 3 + x 2 – x ⇔ B = x 6 – x 4 – x 4 + x 3 + x 2 – x ⇔ B = ( x 6 – x 4 ) – ( x 4 – x 2 ) + ( x 3 – x ) ⇔ B = x 3 ( x 3 – x ) – x ( x 3 – x ) + ( x 3 – x ) ⇔ B = ( x 3 – x + 1 ) ( x 3 – x )
Tại x 3 – x = 6, ta có B = (6 + 1).6 = 7.6 = 42
Đáp án cần chọn là: B
Tính giá trị của biểu thức B = x 6 – 2 x 4 + x 3 + x 2 – x khi x 3 – x = 6:
A. 36
B. 42
C. 48
D. 56
B = x 6 – 2 x 4 + x 3 + x 2 – x ⇔ B = x 6 – x 4 – x 4 + x 3 + x 2 – x ⇔ B = ( x 6 – x 4 ) – ( x 4 – x 2 ) + ( x 3 – x ) ⇔ B = x 3 ( x 3 – x ) – x ( x 3 – x ) + ( x 3 – x ) ⇔ B = ( x 3 – x + 1 ) ( x 3 – x )
Tại x 3 – x = 6, ta có B = (6 + 1).6 = 7.6 = 42
Đáp án cần chọn là: B
Phân tích thành nhân tử:
a) x 3y 3 + x2y 2 + 4
b) 2x4 - 5x3 + 2x2 - x + 2
c) (x - 3)( x - 5)( x - 6)( x-10) - 24x2
d) (a + b + c)(ab + bc + ca)-abc
làm ơn cứu với
Bài 1: Rút gọn rồi tính giá trị biểu thức:
a) A = 4x2.(-3x2 + 1) + 6x2.( 2x2 – 1) + x2 khi x = -1
b) B = x2.(-2y3 – 2y2 + 1) – 2y2.(x2y + x2) khi x = 0,5 và y = -1/2
Bài 2: Tìm x, biết:
a) 2(5x - 8) – 3(4x – 5) = 4(3x – 4) +11
b) 2x(6x – 2x2) + 3x2(x – 4) = 8
c) (2x)2(4x – 2) – (x3 – 8x2) = 15
Bài 3: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x:
P = x(2x + 1) – x2(x+2) + x3 – x +3
\(1,\\ a,A=4x^2\left(-3x^2+1\right)+6x^2\left(2x^2-1\right)+x^2\\ A=-12x^4+4x^2+12x^2-6x^2+x^2=-x^2=-\left(-1\right)^2=-1\\ b,B=x^2\left(-2y^3-2y^2+1\right)-2y^2\left(x^2y+x^2\right)\\ B=-2x^2y^3-2x^2y^2+x^2-2x^2y^3-2x^2y^2\\ B=-4x^2y^3-4x^2y^2+x^2\\ B=-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^3-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^2+\left(0,5\right)^2\\ B=\dfrac{1}{8}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{8}\)
\(2,\\ a,\Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ b,\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3=8=-2^3\\ \Leftrightarrow x=2\\ c,\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^2=15\\ \Leftrightarrow16x^3-8x^2-x^3+8x^2=15\\ \Leftrightarrow15x^3=15\\ \Leftrightarrow x^3=1\Leftrightarrow x=1\)
\(P=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\\ P=2x^2+x-x^3-2x^2+x^3-x+3\\ P=3\left(đfcm\right)\)