\(B=\dfrac{-1}{3}+\dfrac{21}{8|15x-21|+7}\)
tìm giá trị lớn nhất của biểu thức:
a) A = 5 + \(\dfrac{15}{4\left|3x+7\right|+3}\)
b) B = \(\dfrac{-1}{3}+\dfrac{21}{8\left|15x-21\right|+7}\)
a, để Amax khi\(\dfrac{15}{4\left|3x+7\right|+3}max\) khi:
\(\left\{{}\begin{matrix}4\left|3x+7\right|+3min\\4\left|3x+7\right|+3>0\end{matrix}\right.\)
mà\(4\left|3x+7\right|+3\ge3\)nên max A=10 khi x=\(\dfrac{-7}{3}\)
a: 4|3x+7|+3>=3
=>15/4|3x+7|+3<=5
=>A<=10
Dấu = xảy ra khi x=-7/3
b: 8|15x-21|+7>=7
=>21/8|15x-21|+7<=3
=>B<=3-1/3=8/3
Dấu = xảy ra khi x=7/5
a)\(\dfrac{3}{5}\)+\(\dfrac{17}{21}\)*\(\dfrac{17}{21}\)+\(\dfrac{3}{5}\)
b)\(\dfrac{15}{8}\):\(\dfrac{5}{20}\)-\(\dfrac{7}{8}\):\(\dfrac{1}{4}\)
a)\(\left(\dfrac{3}{5}+\dfrac{17}{21}\right)^2\)
b)4
tìm x,y,z \(\dfrac{15x-21}{7}\) =\(\dfrac{3y+2}{5}\)=\(\dfrac{5z-4}{3}\)và x+y-z=3
Áp dụng tc dstbn:
\(\dfrac{15x-21}{7}=\dfrac{3y+2}{5}=\dfrac{5z-4}{3}=\dfrac{15x-21+15y+10-15z+12}{7+5\cdot5-3\cdot3}=\dfrac{15\left(x+y-z\right)-21+10+12}{7+25-9}=\dfrac{45-21+10+12}{23}=\dfrac{46}{23}=2\\ \Rightarrow\left\{{}\begin{matrix}15x-21=14\\3y+2=10\\5z-4=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{3}\\y=\dfrac{8}{3}\\z=2\end{matrix}\right.\)
d) \(\dfrac{-3 }{7 } + \dfrac{5 }{ 13 }+ \dfrac{-4 }{ 7}\)
\(e ) \dfrac{-5}{21}+ \dfrac{-2}{21}+\dfrac{-8}{24}\) \(\dfrac{-3 }{7 } + \dfrac{5 }{ 13 }+ \dfrac{-4 }{ 7}\)\( e)\dfrac{-5 }{ 21} + \dfrac{-2 }{21 } + \dfrac{-8 }{ 4}\)
f
d)
` (-3)/7 + 5/13 + (-4)/7 = -3/7 + (-4/7 ) + 5/13 = -1 + 5/13 = -8/13`
e2)
`-5/21 + (-2)/21 + (-8)/4 = -7/21 + -8/4 = -7/3`
\(a,\dfrac{3}{5}+\dfrac{-5}{9}\)
\(b,\dfrac{1}{3}+\dfrac{-4}{3};\dfrac{4}{7}\)
\(c,-\dfrac{27}{23}+\dfrac{5}{21}+\dfrac{4}{23}+\dfrac{16}{21}+\dfrac{1}{2}\)
\(d,\dfrac{-8}{9}+\dfrac{1}{9}.\dfrac{2}{9}+\dfrac{1}{9}.\dfrac{7}{9}\)
\(a,\dfrac{3}{5}+\dfrac{-5}{9}=\dfrac{27-25}{45}=\dfrac{2}{49}.\)
\(c,\dfrac{-27}{23}+\dfrac{5}{21}+\dfrac{4}{23}+\dfrac{16}{21}+\dfrac{1}{2}=\dfrac{-23}{23}+\dfrac{21}{21}+\dfrac{1}{2}=-1+1+\dfrac{1}{2}=\dfrac{1}{2}.\)
\(d,\dfrac{-8}{9}+\dfrac{1}{9}.\dfrac{2}{9}+\dfrac{1}{9}.\dfrac{7}{9}=\dfrac{-8}{9}+\dfrac{1}{9}.\left(\dfrac{2}{9}+\dfrac{7}{9}\right)=\dfrac{-8}{9}+\dfrac{1}{9}.1=\dfrac{-8+1}{9}=\dfrac{-7}{9}.\)
a) \(\dfrac{-11}{15}< \dfrac{x}{15}< \dfrac{-8}{15}\)
b) \(\dfrac{3}{7}< \dfrac{x}{21}< \dfrac{2}{3}\)
c) \(\dfrac{-67}{21}< \dfrac{x}{168}< \dfrac{-3}{8}\)
a) Ta có: \(\dfrac{-11}{15}< \dfrac{x}{15}< \dfrac{-8}{15}\)
nên -11<x<-8
hay \(x\in\left\{-10;-9\right\}\)
b) Ta có: \(\dfrac{3}{7}< \dfrac{x}{21}< \dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{9}{21}< \dfrac{x}{21}< \dfrac{14}{21}\)
Suy ra: 9<x<14
hay \(x\in\left\{10;11;12;13\right\}\)
c) Ta có: \(\dfrac{-67}{21}< \dfrac{x}{168}< \dfrac{-3}{8}\)
nên \(\dfrac{-536}{168}< \dfrac{x}{168}< \dfrac{-63}{168}\)
Suy ra: -536<x<-63
hay \(x\in\left\{-535;-534;...;-64\right\}\)
Tính.
a) \(\dfrac{7}{24}+\dfrac{11}{6}\) b) \(3+\dfrac{5}{8}\) c) \(\dfrac{19}{28}-\dfrac{3}{7}\) d) \(\dfrac{53}{21}-1\)
a)
\(\dfrac{7}{24}+\dfrac{11}{6}\\ =\dfrac{7}{24}+\dfrac{11\times4}{6\times4}\\ =\dfrac{7}{24}+\dfrac{44}{24}\\ =\dfrac{7+44}{24}\\ =\dfrac{51}{24}\\=\dfrac{17}{8}\)
b)
\(3+\dfrac{5}{8}\\ =\dfrac{3\times8}{8}+\dfrac{5}{8}\\ =\dfrac{24}{8}+\dfrac{5}{8}\\ =\dfrac{29}{8}\)
c)
\(\dfrac{19}{28}-\dfrac{3}{7}\\ =\dfrac{19}{28}-\dfrac{3\times4}{7\times4}\\ =\dfrac{19}{28}-\dfrac{12}{28}\\ =\dfrac{7}{28}=\dfrac{1}{4}\)
d)
\(\dfrac{53}{21}-1\\ =\dfrac{53}{21}-\dfrac{21}{21}\\ =\dfrac{53-21}{21}\\ =\dfrac{32}{21}\)
a) \(\dfrac{7}{24}+\dfrac{11}{6}=\dfrac{7}{24}+\dfrac{44}{24}=\dfrac{7+44}{24}=\dfrac{51}{24}\)
b) \(3+\dfrac{5}{8}=\dfrac{24}{8}+\dfrac{5}{8}=\dfrac{24+5}{8}=\dfrac{29}{8}\)
c) \(\dfrac{19}{28}-\dfrac{3}{7}=\dfrac{19}{28}-\dfrac{12}{28}=\dfrac{19-12}{28}=\dfrac{7}{28}=\dfrac{1}{4}\)
d) \(\dfrac{53}{21}-1=\dfrac{53}{21}-\dfrac{21}{21}=\dfrac{53-21}{21}=\dfrac{32}{21}\)
a ) \(\dfrac{7}{-25}\) + \(\dfrac{-8}{25}\)
b ) \(\dfrac{7}{21}\) - \(\dfrac{9}{-36}\)
c )\(\dfrac{-3}{4}\) + \(\dfrac{2}{7}\) + \(\dfrac{1}{4}\)+\(\dfrac{5}{7}\)
a)\(\dfrac{7}{-25}+-\dfrac{8}{25}=-\dfrac{15}{25}=-\dfrac{3}{5}\)
b)\(\dfrac{7}{21}-\dfrac{9}{-36}\)
\(=\dfrac{1}{3}+\dfrac{1}{4}\)
\(=\dfrac{4}{12}+\dfrac{3}{12}=\dfrac{7}{12}\)
c)\(-\dfrac{3}{4}+\dfrac{2}{7}+\dfrac{1}{4}+\dfrac{5}{7}\)
\(=\left(-\dfrac{3}{4}+\dfrac{1}{4}\right)+\left(\dfrac{2}{7}+\dfrac{5}{7}\right)\)
\(=-\dfrac{1}{2}+1\)
\(=\dfrac{2}{2}-\dfrac{1}{2}=\dfrac{1}{2}\)
\(a,\dfrac{7}{-25}+\dfrac{-8}{25}=\dfrac{-7}{25}+\dfrac{-8}{25}=\dfrac{-15}{25}=\dfrac{-3}{5}\\ b,\dfrac{7}{21}-\dfrac{9}{-36}=\dfrac{7}{21}+\dfrac{9}{36}=\dfrac{7}{12}\\ c,\dfrac{-3}{4}+\dfrac{2}{7}+\dfrac{1}{4}+\dfrac{5}{7}\\ =\left(\dfrac{-3}{4}+\dfrac{1}{4}\right)+\left(\dfrac{2}{7}+\dfrac{5}{7}\right)\\ =-\dfrac{1}{2}+1\\ =\dfrac{1}{2}\)
\(a.\dfrac{3}{5}\) x \(\dfrac{17}{21}\) \(+ \) \(\dfrac{17}{21}\) x \(\dfrac{2}{5}\)
\(b.(\dfrac{8}{5}+\dfrac{5}{6}):\dfrac{7}{6}\)
`a)3/5xx17/21+17/21xx2/5`
`=17/21xx(3/5+2/5)`
`=17/21xx1=17/21`
`b)(8/5+5/6):7/6`
`=(48/30+25/30)xx6/7`
`=73/30xx6/7`
`=73/35`