Tìm m, n nguyên dương sao cho \(\left(2m+1\right)⋮n\)và \(\left(2n+1\right)⋮m\)
Tìm m, n nguyên dương sao cho \(\left(2m-1\right)⋮n\) và \(\left(2n-1\right)⋮m\)
Tìm các số n nguyên dương sao cho \(\left(n^3-8n^2+2n\right)⋮\left(n^2+1\right)\)
1) Tìm các số nguyên dương a và b sao cho \(a^2+5a+12=\left(a+2\right)b^2+\left(a^2+6a+8\right)b\)
2) Tìm các số nguyên m và n sao cho \(\left(m^2+n\right)\left(n^2+m\right)=\left(m-n\right)^3\)
3) Cho các số không âm a, b, c sao cho a + b + c = 3. Tìm GTNN của P = ab + bc + ca - \(\frac{1}{2}abc\)
Bài cuối có Max nữa nhé, cần thì ib mình làm cho.
Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)
Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)
Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị
3/ \(P=\Sigma\frac{\left(3-a-b\right)\left(a-b\right)^2}{3}+\frac{5}{2}abc\ge0\)
Tìm m nguyên dương để pht: \(x^2-2\left(m-1\right)x+2m-6=0\) có 2 nghiệm x1, x2 sao cho:\(A=\left(\dfrac{x_1}{x_2}\right)^2+\left(\dfrac{x_1}{x_2}\right)^2\) có giá trị nguyên
Chắc đề là \(A=\left(\dfrac{x_1}{x_2}\right)^2+\left(\dfrac{x_2}{x_1}\right)^2\) mới đúng
\(\Delta'=\left(m-1\right)^2-\left(2m-6\right)=\left(m-2\right)^2+3>0\)
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-6\end{matrix}\right.\) với \(m\ne3\)
\(A=\left(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}\right)^2-2=\left(\dfrac{x_1^2+x_2^2}{x_1x_2}\right)^2-2\)
\(A=\left[\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right]^2-2=\left(\dfrac{4\left(m-1\right)^2}{2m-6}-2\right)^2-2\)
\(A=\left(2m-\dfrac{8}{m-3}\right)^2-2\)
\(A\) nguyên \(\Leftrightarrow\dfrac{8}{m-3}\) nguyên \(\Leftrightarrow m-3=Ư\left(8\right)\)
\(\Leftrightarrow m=...\)
Tìm m,n nguyên dương sao cho \(\left(\frac{1}{2}\right)^n-\left(\frac{1}{2}\right)^m=\frac{1}{512}\)
tìm số nguyên a thỏa mãn đẳng thức a(m+p)= 5(m+n) và \(\frac{25}{21}.\left(p-n\right)\left(2m+n+p\right)=\left(m+p\right)^2\)với m,n,p là những số dương và n#p
a(m+p) = 5(m+n) => \(\frac{m+n}{m+p}=\frac{a}{5}\)
từ đẳng thức thứ 2 => 25.(p - n)(2m+n+p) = 21(m+p)2 ==> 25.(m+ p- m - n)(m+n+ m + p) = 21(m+p)2
Chia cả 2 vế chp (m+p)2 ta được
\(25.\left(\frac{m+p}{m+p}-\frac{m+n}{m+p}\right)\left(\frac{m+n}{m+p}+\frac{m+p}{m+p}\right)=21\)
thay (*) vào ta đc
\(\Rightarrow25.\left(1-\frac{a}{5}\right)\left(\frac{a}{5}+1\right)=21\)\(\Rightarrow25.\left(1-\left(\frac{a}{5}\right)^2\right)=21\)
\(\Rightarrow25.\left(\frac{25-a^2}{25}\right)=21\Rightarrow25-a^2=21\Leftrightarrow a^2=4\Rightarrow a=2;-2\)
vậy ....
Cho \(f\left(n\right)=\dfrac{4n+\sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt[]{2n-1}}\) với n nguyên dương. Tính \(f\left(1\right)+f\left(2\right)+...+f\left(40\right)\).
\(f\left(n\right)=\dfrac{2n-1+2n+1+\sqrt{\left(2n+1\right)\left(2n+1\right)}}{\sqrt{2n+1}+\sqrt{2n-1}}\\ f\left(n\right)=\dfrac{\left(\sqrt{2n+1}-\sqrt{2n-1}\right)\left(2n-1+2n+1+\sqrt{\left(2n+1\right)\left(2n+1\right)}\right)}{2n+1-2n+1}\\ f\left(n\right)=\dfrac{\left(\sqrt{2n+1}\right)^3-\left(\sqrt{2n+1}\right)^3}{2}=\dfrac{\left(2n+1\right)\sqrt{2n+1}-\left(2n-1\right)\sqrt{2n+1}}{2}\)
\(\Leftrightarrow f\left(1\right)+f\left(2\right)+...+f\left(40\right)=\dfrac{3\sqrt{3}-1\sqrt{1}+5\sqrt{5}-3\sqrt{3}+...+81\sqrt{81}-79\sqrt{79}}{2}\\ =\dfrac{81\sqrt{81}-1\sqrt{1}}{2}=\dfrac{9^3-1}{2}=364\)
Cho ba số thực dương a , b , c thỏa mãn \(a^2+b^2+c^2=3\); m , n là các số nguyên dương sao cho 2n \(\ge\) m. CMR:
\(m\left(a+b+c\right)+n\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge m\left(m+n\right)\)( ** ).
Tìm số nguyên dương n sao cho \(C_{2n+1}^1-2.2.C_{2n+1}^2+3.2^2.C_{2n+1}^3-...+\left(2n+1\right).2^{2n}.C_{2n+1}^{2n+1}=2019\)
Xét khai triển:
\(\left(1+2x\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1.2x+C_{2n+1}^2\left(2x\right)^2+...+C_{2n+1}^{2n+1}\left(2x\right)^{2n+1}\)
Đạo hàm 2 vế:
\(2\left(2n+1\right)\left(1+2x\right)^{2n}=2C_{2n+1}^1+2^2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n+1}C_{2n+1}^{2n+1}x^{2n}\)
\(\Leftrightarrow\left(2n+1\right)\left(1+2x\right)^{2n}=C_{2n+1}^1+2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}x^{2n}\)
Cho \(x=-1\) ta được:
\(2n+1=C_{2n+1}^1-2C_{2n+1}^2+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}\)
\(\Rightarrow2n+1=2019\Rightarrow n=1009\)