Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Thiên Long
Xem chi tiết
Bùi Đức Thắng
Xem chi tiết
Fan EBXTOS
Xem chi tiết
Nguyễn Hưng Phát
7 tháng 7 2018 lúc 22:07

Áp dung BĐT Bunhiacopxki ta có:

\(13A=\left(2^2+3^2\right)\left(x^2+y^2\right)\ge\left(2.x+3.y\right)^2=13^2=169\)

\(\Rightarrow13A\ge169\Rightarrow A\ge13\)

Nên GTNN của A là 13 đạt được khi \(\frac{2}{x}=\frac{3}{y}=\frac{4}{2x}=\frac{9}{3y}=\frac{4+9}{2x+3y}=\frac{13}{13}=1\)

        \(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Fan EBXTOS
7 tháng 7 2018 lúc 22:08

Cảm ơn nha !

tran vinh
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
22 tháng 8 2021 lúc 16:35

Ta có : \(x^2+y^2+z^2-xy-yz-zx=\frac{1}{2}.2.\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(=\frac{1}{2}\left[\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\right]\ge0\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)

Đẳng thức xảy ra khi \(x=y=z\)

Khách vãng lai đã xóa
An Vy
Xem chi tiết
Incursion_03
20 tháng 7 2019 lúc 12:08

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

Incursion_03
20 tháng 7 2019 lúc 12:15

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

Incursion_03
20 tháng 7 2019 lúc 12:15

bài 3 min hay max ?

Nguyễn Thị NgọcBích
Xem chi tiết
iloveyoublackpink
Xem chi tiết
Nguyễn Minh Ngân
Xem chi tiết
Nguyên Nguyễn Khôi
Xem chi tiết