cho a thỏa mãn \(a^2-5a+2=0\)
B=\(a^5-a^4-18a^3+9a^2-5a+2017+\left(a^4-40a^2+4\right):a^2\)
CHo a thỏa mãn\(a^2-5a+2=0\)
Tính giá trị của biểu thức:
\(P=a^5-a^4-18a^3+9a^2-5a+2017+\left(a^4-40a^2+4\right):a^2\)
Ta có:\(a^2-5a+2=0\Rightarrow a^2=5a-2\)
\(P=a^5-a^4-18a^3+9a^2-5a+2017+\frac{a^4-40a^2+4}{a^2}\)
\(=a^5-a^4-18a^3+9a^2-5a+2017+\frac{\left(a^2-2\right)^2-36a^2}{a^2}\)
\(=a^5-a^4-18a^3+9a^2-5a+2015+2+\frac{\left(a^2-2\right)^2-\left(6a\right)^2}{a^2}\)
\(=\left(a^2-5a+2\right)\left(a^3+4a^2+1\right)+2015+\frac{\left(a^2-2+6a\right)\left(a^2-2-6a\right)}{a^2}\)
\(=0\times\left(a^3+4a^2+1\right)+2015+\frac{\left(a^2-2+6a\right)\left(a^2-2-6a\right)}{a^2}\)
\(=0+2015+\frac{\left(a^2-2+6a\right)\left(a^2-2-6a\right)}{a^2}\)
\(=2015+\frac{\left(5a-2-6a-2\right)\left(5a-2+6a-2\right)}{a^2}\)Vì \(a^2=5a-2\)
\(=2015+\frac{-\left(a+4\right)\left(11a-4\right)}{a^2}\)
\(=2015+\frac{-\left(a^2+40a-16\right)}{a^2}\)
\(=2015+\frac{-\left[a^2+8\left(5a-2\right)\right]}{a^2}\)Vì \(a^2=5a-2\)
\(=2015+\frac{-\left(a^2+8a^2\right)}{a^2}\)
\(=2015+\frac{-9a^2}{a^2}\)
\(=2015+\frac{-9}{1}\)
\(=2015-9\)
\(=2006\)
Cre:hoidap247
Cho \(a^2-5a+2=0\). Tính \(B=a^5-a^4-18a^3+9a^2-5a+2017+\left(a^2-40a+4\right):a^2\)
1 Cho x,y,z=0 thỏa mãn x^2+y^2+z^2=1 Tìm GTNN của M=1/16x^2+1/4y^2+1/z^2
2 Cho a^2-5a+2=0. Tính P=a^5-a^4-18a^3+9a^2-5a+2017-(a^4-40a^2+4) : a^2
cho a^2-5+2=0 tính P = a^5-a^4-18a^3+9a^2 - 5a +2017 +(a^4-40a^2+4):a^2
Có a2-5a+2=0
TÍNH
P=a^5-a^4-18a^3+9a^2-5a+2017+(a^4+40a^2+4):a^2
Cho a thỏa mãn a2 - 5a + 2 = 0 . Tính giá trị của biểu thức:
P=a5 - a4 -18a3 + 9a2 - 5a +2017 + (a4 - 40a2 +4) : a2
Em tham khảo tại đây nhé:
Câu hỏi của kacura - Toán lớp 8 - Học toán với OnlineMath
Cho a thỏa mãn a2 - 5a + 2 = 0 . Tính giá trị của biểu thức:
P=a5 - a4 -18a3 + 9a2 - 5a +2017 + (a4 - 40a2 +4) : a2
Ta có:
\(a^5-a^4-18a^3+9a^2-5a+2017+\frac{a^4-40a^2+4}{a^2}\)
\(=a^5-5a^4+2a^3+4a^4-20a^3+8a^2+a^2-5a+2+2015+\frac{a^4-40a^2+4}{a^2}\)
\(=\left(a^2-5a+2\right)\left(a^3+4a^2+1\right)+2015+\frac{a^4-40a^2+4}{a^2}\)
\(=2015+\frac{a^4-40a^2+4}{a^2}=\frac{a^4+1970a^2+4}{a^2}\)
\(a^2-5a+2=0\Rightarrow a^2-5a=-2\Rightarrow a^4-10a^3+25a^2=4\)
Ta có : \(\frac{a^4+1970a^2+4}{a^2}=\frac{a^4-10a^3+25a^2+10a^3-50a^2+20a+4a^2-20a+8+1991a^2-4}{a^2}\)
\(=\frac{4+\left(10a+4\right)\left(a^2-5a+2\right)-4+1991a^2}{a^2}\)
\(=\frac{1991a^2}{a^2}=1991\)
Rút gọn biểu thức
Giải nhanh giúp mk nha!Thanks <3
1.\(5\sqrt{a}+6\sqrt{a.\frac{1}{4}}-\sqrt{a^2.\frac{4}{a}}+\sqrt{5}=5\sqrt{a}+6.\frac{1}{2}\sqrt{a}-2\sqrt{a}\)+\(\sqrt{5}\)
bạn tự làm nốt các câu này và làm tương tự các câu kia nhé!!Nếu khó chỗ nào hãy nhắn tin cho mk!! hihi
Cho a,b thỏa mãn \(\left(a+\sqrt{1+b^2}\right)\left(b+\sqrt{1+a^2}\right)=1\)
Tính giá trị của \(T=\left(a^3+b^3\right)\left(a^7-5a^2b^4+21ab^5+73\right)+320\)