Chứng minh rằng x2+x+1>0
Ai bk giải giùm với ạ ( đang vội
Chứng minh rằng (a3 + 5a) chia hết cho 6
Đang vội ai bk giải giùm em với ạ
chết lộn
làm lại này
\(a^3+5a\Rightarrow1.a^3+5a\)
=> \(a^2\left(a5+1\right)\Rightarrow a^2\left(a6\right)\Rightarrow a^2\left(a6\right)⋮6\)
Câu kia, sai nhé
\(a^3+5a\Rightarrow1.a^3+5a\)
=>\(a^2.\left(a5+1\right)\)
=> \(a^2.\left(a6\right)\)
Vậy \(a^2.\left(a6\right)\)\(⋮\)6
~~~ Nếu sai thì bỏ qua, tại lớp 7 nên không chắc~~~~~
6. Chứng minh rằng:
a. x2 + xy + y2 + 1 > 0 với mọi x, y
b. x2 + 4y2 + z2 - 2x - 6z + 8y + 15 > 0 Với mọi x, y, z
(ai lm giúp với ạ iem cảm ơn nhìu
a) \(x^2+xy+y^2+1\)
\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)
\(\Rightarrow dpcm\)
b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)
\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)
\(\Rightarrow dpcm\)
b.
$x^2+4y^2+z^2-2x-6z+8y+15=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1$
$=(x-1)^2+(2y+2)^2+(z-3)^2+1\geq 0+0+0+1>0$ với mọi $x,y,z$
Ta có đpcm.
Chứng minh định lí sau : Hai tia phân giác của hai góc kề bù vuông góc với nhau ( ai giải lẹ đi ạ , mik đang vội )
Giả sử góc xOy bẹt, tia Oz và Om,On lần lượt là phân giác góc xOz và yOz
\(\Rightarrow\widehat{mOn}=\widehat{mOz}+\widehat{zOn}=\dfrac{1}{2}\widehat{xOz}+\dfrac{1}{2}\widehat{yOz}=\dfrac{1}{2}\left(\widehat{xOz}+\widehat{yOz}\right)=\dfrac{1}{2}\cdot\widehat{xOy}=\dfrac{1}{2}\cdot180^0=90^0\)
Do đó Om vuông góc On
Suy ra đpcm
Cho x,y,z khác 0 và x2 = y.z ; y2 = z.x ; z2 = x.y .
Chứng minh rằng : x=y=z
Mọi người giúp em với ạ , em đang cần rất gấp ạ . Thanks nhiều ạ !
Theo đề bài ta có:
;
cân bằng phương trình bằng cách nhân x vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân y vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân z vào cả hai vế ta có:
vì
Vì Có cùng số mũ và bằng nhau
Nên các cơ số cũng bằng nhau
Ta có: \(x^2=y\cdot z\)
nên \(z=\dfrac{x^2}{y}\)(1)
Ta có: \(y^2=z\cdot x\)
nên \(z=\dfrac{y^2}{x}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x^2}{y}=\dfrac{y^2}{x}\)
\(\Leftrightarrow x^3=y^3\)
hay x=y(3)
Ta có: \(x^2=y\cdot z\)
nên \(y=\dfrac{x^2}{z}\)(4)
Ta có: \(z^2=x\cdot y\)
nên \(y=\dfrac{z^2}{x}\)(5)
Từ (4) và (5) suy ra \(\dfrac{x^2}{z}=\dfrac{z^2}{x}\)
\(\Leftrightarrow x^3=z^3\)
hay x=z(6)
Từ (3) và (6) suy ra x=y=z(đpcm)
\(x^2=yz\Rightarrow\dfrac{x}{y}=\dfrac{z}{x}\\ y^2=zx\Rightarrow\dfrac{y}{z}=\dfrac{x}{y}\\ z^2=xy\Rightarrow\dfrac{z}{x}=\dfrac{y}{z}\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{x+y+z}=1\\ \Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=1\\ \Rightarrow x=y=z\)
cho pt: \(x^2-\left(m-1\right)x-2=0\).Chứng minh rằng pt luôn có hai nghiệm phân biệt x1x2.Tìm m để x1x2 thỏa mãn \(\left(1-\dfrac{2}{x_1+1}\right)^2+\left(1-\dfrac{2}{x2+1}\right)^2=1\)
Mn ơi ai giúp e với đang cần gấp ạ! em cảm ơn
\(\Delta=\left(m-1\right)^2+8>0;\forall m\) nên pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2\end{matrix}\right.\)
\(\left(1-\dfrac{2}{x_1+1}\right)^2+\left(1-\dfrac{2}{x_2+1}\right)^2=1\)
\(\Leftrightarrow\left(\dfrac{x_1-1}{x_1+1}\right)^2+\left(\dfrac{x_2-1}{x_2+1}\right)^2=1\)
\(\Leftrightarrow\left(\dfrac{x_1-1}{x_1+1}+\dfrac{x_2-1}{x_2+1}\right)^2-2\left(\dfrac{x_1-1}{x_1+1}\right)\left(\dfrac{x_2-1}{x_2+1}\right)=1\)
\(\Leftrightarrow\left(\dfrac{\left(x_1-1\right)\left(x_2+1\right)+\left(x_1+1\right)\left(x_2-1\right)}{\left(x_1+1\right)\left(x_2+1\right)}\right)^2-2\left(\dfrac{x_1x_2-\left(x_1+x_2\right)+1}{x_1x_2+x_1+x_2+1}\right)=1\)
\(\Leftrightarrow\left(\dfrac{2x_1x_2-2}{x_1x_2+x_1+x_2+1}\right)^2-2\left(\dfrac{x_1x_2-\left(x_1+x_2\right)+1}{x_1x_2+x_1+x_2+1}\right)=1\)
\(\Leftrightarrow\left(\dfrac{-6}{m-2}\right)^2+2\left(\dfrac{m}{m-2}\right)=1\)
\(\Leftrightarrow36\left(\dfrac{1}{m-2}\right)^2+4\left(\dfrac{1}{m-2}\right)+1=0\)
Pt trên vô nghiệm nên ko tồn tại m thỏa mãn yêu cầu
Cho x +y = 2 .Chứng minh rằng xy\(\le\)1
Mn giải giùm e vs e đang cần gấp ạ. Ưu tiên phương pháp giải độc và lạ (bằng hình học càng tốt ạ)
P/s : e đang cần gấp
\(x+y=2\Rightarrow y=2-x\)
\(xy=x.\left(2-x\right)=2x-x^2=-\left(x^2-2x\right)\)
\(=-\left(x^2-2x+1-1\right)=-\left(x-1\right)^2+1=1-\left(x-1\right)^2\le1\)
=> đpcm
( Dấu "=" xảy ra <=> x = 1 => y = 2 - x = 2 - 1 = 1 )
Cho đa thức f(x) = ax^2 + bx + c
a, Chứng minh rằng nếu a + b + c = 0 thì đa thức f(x) có nghiệm x = 1
b, Chứng minh rằng a - b + c = 0 thì đa thức f(x) có nghiệm bằng -1
Giải chi tiết giùm nha ai giải được mình like cho
a,a+b+c=0 <=>c=-a-b
Khi đ f(x)=ax^2+bx-a-b
f(x)=a(x^2-1)+b(x-1)=(x-1)(ax+a+b)
=>f(x) có nghiệm x=1
b,a-b+c=0 <=>c=b-a
Khi đó f(x)=ax^2+bx+b-a
f(x)=a(x^2-1)+b(x+1)=(x+1)(ax-a+b)
=>f(x) có nghiệm x=-1
a. Ta có: \(f\left(1\right)=a.1^2+b.1+c\)
\(f\left(1\right)=a+b+c\)
Mà theo đề bài có a+b+c=0
=>\(f\left(1\right)=0\)
x=1 là một nghiệm của đa thức f(x)
Phần b bạn làm tương tự nhé
Giúp mk với!!!!!!!! Help me! @_@
Chứng minh rằng : x^5 + y^5 ≥ x^4y + xy^4 với x, y ≠ 0 và x + y ≥ 0
Giải giùm mk xog thì kết bạn nha ai nhanh mk sẽ tick cho!^^
Đề thế này phải ko bạn:
Chứng minh rằng: \(x^5+y^5\ge x^4.y+x.y^4\)với \(x,y\ne0\)và\(x+y\ge0\)
bạn vào fx viết lại đề đi nha, sai đề rùi
Ta có: \(x^5+y^5\ge x^4.y+x.y^4\)(1)
<=>\(x^5+y^5-x^4.y-x.y^4\ge0\)
<=>\(\left(x^5-x^4.y\right)-\left(x.y^4-y^5\right)\ge0\)
<=>\(x^4.\left(x-y\right)-y^4.\left(x-y\right)\ge0\)
<=>\(\left(x^4-y^4\right).\left(x-y\right)\ge0\)
<=>\(\left[\left(x^2\right)^2-\left(y^2\right)^2\right].\left(x-y\right)\ge0\)
<=>\(\left(x^2+y^2\right).\left(x^2-y^2\right).\left(x-y\right)\ge0\)
<=>\(\left(x^2+y^2\right).\left(x+y\right).\left(x-y\right).\left(x-y\right)\ge0\)
<=>\(\left(x^2+y^2\right).\left(x+y\right).\left(x-y\right)^2\ge0\)
Vì \(x^2+y^2\ge0,\left(x-y\right)^2\ge0\)
=>(1)<=>\(x+y\ge0\)(2)
Vì \(x+y\ge0\)(theo giả thiết)
=>(2) đúng với mọi x,y
Vì các dấu"<=>" có giá trị như nhau
=>(1) đúng với mọi x,y
=>ĐPCM
Cho tam giác ABC trung tuyến AM. kẻ BH , CK vuông góc với AM
A)chứng minh rằng BH// CK, BH=CK
B)Chứng minh rằng BK//CH, BK=CH
C)Gọi M là trung điểm của BK, F là trung điểm của CH. Chứng minh rằng E,M,F thẳng hàng
D)Chứng minh rằng tam giác AEF cân
Giải nhanh giùm mk nhà các bạn!!!