Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đình Tuấn Long
Xem chi tiết
Doan Quynh
10 tháng 2 2016 lúc 13:23
Ta có : OB=OC . Mà OB=OA ( tam giác OAB cân tại O) Nên OA=OB=OC. =>OA=1/2BC. =>Tam giác ABC vuông góc tại A (theo định lý). Vậy : góc BAC = 90*
Duong
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 19:30

a: Sửa đề: Chứng minh ΔOCD=ΔOAB

Xét ΔOCD và ΔOAB có

OC=OA

\(\widehat{COD}=\widehat{AOB}\)(hai góc đối đỉnh)

OD=OB

Do đó: ΔOCD=ΔOAB

b: Xét ΔBHO vuông tại H và ΔDKO vuông tại K có

BO=DO

\(\widehat{BOH}=\widehat{DOK}\)(hai góc đối đỉnh)

Do đó: ΔBHO=ΔDKO

=>BH=DK

c: ta có;ΔOBA=ΔODC

=>\(\widehat{OBA}=\widehat{ODC}\)

Xét ΔMBO và ΔNDO có

MB=ND

\(\widehat{MBO}=\widehat{NDO}\)

BO=DO

Do đó: ΔMBO=ΔNDO

=>\(\widehat{MOB}=\widehat{NOD}\)

mà \(\widehat{MOB}+\widehat{MOD}=180^0\)(hai góc kề bù)

nên \(\widehat{NOD}+\widehat{MOD}=180^0\)

=>\(\widehat{MON}=180^0\)

=>M,O,N thẳng hàng

Duong
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 19:06

a: Sửa đề: Chứng minh ΔOCD=ΔOAB

Xét ΔOCD và ΔOAB có

OC=OA

\(\widehat{COD}=\widehat{AOB}\)(hai góc đối đỉnh)

OD=OB

Do đó: ΔOCD=ΔOAB

b: Xét ΔBHO vuông tại H và ΔDKO vuông tại K có

BO=DO

\(\widehat{BOH}=\widehat{DOK}\)(hai góc đối đỉnh)

Do đó: ΔBHO=ΔDKO

=>BH=DK

c: ta có;ΔOBA=ΔODC

=>\(\widehat{OBA}=\widehat{ODC}\)

Xét ΔMBO và ΔNDO có

MB=ND

\(\widehat{MBO}=\widehat{NDO}\)

BO=DO

Do đó: ΔMBO=ΔNDO

=>\(\widehat{MOB}=\widehat{NOD}\)

mà \(\widehat{MOB}+\widehat{MOD}=180^0\)(hai góc kề bù)

nên \(\widehat{NOD}+\widehat{MOD}=180^0\)

=>\(\widehat{MON}=180^0\)

=>M,O,N thẳng hàng

Tae Tae
Xem chi tiết
Huỳnh Hoàng Thanh Như
Xem chi tiết
Phan Nguyễn Ngọc Hân
Xem chi tiết
Nguyễn Mai Nhan Ngọc
Xem chi tiết
Boa Hancock
Xem chi tiết
Bùi Đức Quỳnh
Xem chi tiết
Nguyễn Minh	Vũ
Xem chi tiết
subjects
11 tháng 1 2023 lúc 8:39

a) xét tam giác AOB và tam giác COD, ta có :
OC = OA (gt)
góc DOC = góc BOA (đối đỉnh)
OD = OB (gt)
=> tam giác AOB = tam giác COD (c.g.c)
b) xét tam giác DON và tam giác BOM, ta có :
OD = OB (gt)
góc DON = góc BOM (đối đỉnh)
MN là cạnh chung
=> tam giác DON = tam giác BOM (c.g.c)
=> MB = ND (2 cạnh tương ứng)

loading...

subjects
10 tháng 1 2023 lúc 20:50

a) xét tam giác AOB và tam giác COD, ta có :
OC = OA (gt)
góc DOC = góc BOA (đối đỉnh)
OD = OB (gt)
=> tam giác AOB = tam giác COD (c.g.c)
b) xét tam giác DON và tam giác BOM, ta có :
OD = OB (gt)
góc DON = góc BOM (đối đỉnh)
MN là cạnh chung
=> tam giác DON = tam giác BOM (c.g.c)
=> MB = ND (2 cạnh tương ứng)loading...

subjects
10 tháng 1 2023 lúc 20:52

a) xét tam giác AOB và tam giác COD, ta có :
OC = OA (gt)
góc DOC = góc BOA (đối đỉnh)
OD = OB (gt)
=> tam giác AOB = tam giác COD (c.g.c)
b) xét tam giác DON và tam giác BOM, ta có :
OD = OB (gt)
góc DON = góc BOM (đối đỉnh)
MN là cạnh chung
=> tam giác DON = tam giác BOM (c.g.c)
=> MB = ND (2 cạnh tương ứng)