(X^2-y^2+6x+9):(x+y+3)
rút gọn biểu thức
a)(x+y)^2-(x-y)^2
b)2.(x+y).(x-y)+(x+y)^2+(x-y)^2
c)(x+3).(x^2-3x+9)-(54+x^3)
d)(2x+y).(4x^2-2xy+y^2)-(2x-y)
e)(6x+1)^2+(6x-1)^2-2.(6x+1).(6x-1)
f)(a-b)^3-(a+b)^3+2b^3
câu c (x+3)(x^2-3x+9)-(54+x^3)=x^3+27-54-x^3
=27
Bài 1: Tính:
a) x^2-9/2x+6 : 3-x/2
b) 2x/x-y - 2y/x-y
c) x+15/x^2-9 + 2/x+3
d)x+y/2x+2y - x-y/2x+2y - y^2+x^2/y^2-x^2
Bài 2: Rút gọn:
a) x^3-x/3x+3
b) x^2+3xy/x^2-9y^2
Bài 3: Thực hiện phép tính:
a) x/x-3 + 9-6x/x^2-3x
b) 6x-3/x : 4x^2-1/3x^2
Tìm tất cả các giá trị của m để hàm số sau xác định trên R:
a, \(y=\dfrac{x+3}{\left(2m-4\right)x+m^2-9}\)
b, \(y=\dfrac{x+3}{x^2-2\left(m-3\right)x+9}\)
c, \(y=\dfrac{x+3}{\sqrt{x^2+6x+2m-3}}\)
d, \(y=\dfrac{x+3}{\sqrt{-x^2+6x+2m-3}}\)
e, \(y=\dfrac{x+3}{\sqrt{x^2+2\left(m-1\right)x+2m-2}}\)
Hàm số xác định trên R khi và chỉ khi:
a.
\(\left(2m-4\right)x+m^2-9=0\) vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}2m-4=0\\m^2-9\ne0\end{matrix}\right.\) \(\Rightarrow m=2\)
b.
\(x^2-2\left(m-3\right)x+9=0\) vô nghiệm
\(\Leftrightarrow\Delta'=\left(m-3\right)^2-9< 0\)
\(\Leftrightarrow m^2-6m< 0\Rightarrow0< m< 6\)
c.
\(x^2+6x+2m-3>0\) với mọi x
\(\Leftrightarrow\Delta'=9-\left(2m-3\right)< 0\)
\(\Leftrightarrow m>6\)
e.
\(-x^2+6x+2m-3>0\) với mọi x
Mà \(a=-1< 0\Rightarrow\) không tồn tại m thỏa mãn
f.
\(x^2+2\left(m-1\right)x+2m-2>0\) với mọi x
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(2m-2\right)=m^2-4m+3< 0\)
\(\Leftrightarrow1< m< 3\)
a, (2x + 3)^2 + (2x-3)^2 -2 (4x^2 -9) b,(x+3)^3 + (x-2)^3 + x^3 -3x (x+2) (x-2) bài 2:tính a,(6x^2 +y^2) (y^2 - 6x^2) b, (4x + 5) (16x^2 - 20x + 25)
a: Ta có: \(\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(4x^2-9\right)\)
\(=4x^2+12x+9+4x^2-12x+9-8x^2+18\)
\(=36\)
Bài 2:
a: \(\left(y^2+6x^2\right)\left(y^2-6x^2\right)=y^4-36x^4\)
b: \(\left(4x+5\right)\left(16x^2-20x+25\right)=\left(16x^2-25\right)\left(4x-5\right)\)
\(=64x^3-16x^2-100x+125\)
Giải các phương trình dưới đây
1, \(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
2,\(\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\)
3, \(\sqrt{6y-y^2-5}-\sqrt{x^2-6x+10}=1\) (x=3 ; y=3)
phân tích đa thức thành nhân tử
\(a)3x^3+6x^2y \)
\(b)2x^3-6x^2\)
\(c)18x^2-20xy\)
\(d)xy+y^2-x-y \)
\(e)(x^2y^2-8)^2-1\)
\(f)x^2-7x-8\)
\(g)10x^2(2x-y)+6xy(y-2x)\)
\(h)x^2-2x+1-y^2\)
\(i)2x(x+2)+x^2(-x-2)\)
\(k)-9+6x-x^2\)
\(l)8xy-2x^2-8y^2\)
\(m)3x^2+5x-3y^2-5y\)
a) 3x³ + 6x²y
= 3x².(x + 2y)
b) 2x³ - 6x²
= 2x².(x - 2)
c) 18x² - 20xy
= 2x.(9x - 10y)
d) xy + y² - x - y
= (xy + y²) - (x + y)
= y(x + y) - (x + y)
= (x + y)(y - 1)
e) (x²y² - 8)² - 1
= (x²y² - 8 - 1)(x²y² - 8 + 1)
= (x²y² - 9)(x²y² - 7)
= (xy - 3)(xy + 3)(x²y² - 7)
f) x² - 7x - 8
= x² - 8x + x - 8
= (x² - 8x) + (x - 8)
= x(x - 8) + (x - 8)
= (x - 8)(x + 1)
a: \(3x^3+6x^2y\)
\(=3x^2\cdot x+3x^2\cdot2y=3x^2\left(x+2y\right)\)
b: \(2x^3-6x^2=2x^2\cdot x-2x^2\cdot3=2x^2\left(x-3\right)\)
c: \(18x^2-20xy=2x\cdot9x-2x\cdot10y=2x\left(9x-10y\right)\)
d: \(xy+y^2-x-y\)
\(=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(y-1\right)\)
e: \(\left(x^2y^2-8\right)^2-1\)
\(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)
\(=\left(x^2y^2-7\right)\left(x^2y^2-9\right)\)
\(=\left(x^2y^2-7\right)\left(xy-3\right)\left(xy+3\right)\)
f: \(x^2-7x-8\)
\(=x^2-8x+x-8\)
\(=x\left(x-8\right)+\left(x-8\right)=\left(x-8\right)\left(x+1\right)\)
g: \(10x^2\left(2x-y\right)+6xy\left(y-2x\right)\)
\(=2x\cdot\left(2x-y\right)\cdot5x-2x\cdot\left(2x-y\right)\cdot3y\)
\(=2x\left(2x-y\right)\left(5x-3y\right)\)
h: \(x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
i: \(2x\left(x+2\right)+x^2\left(-x-2\right)\)
\(=2x\left(x+2\right)-x^2\left(x+2\right)\)
\(=\left(x+2\right)\left(2x-x^2\right)=x\cdot\left(x+2\right)\left(2-x\right)\)
k: \(-x^2+6x-9=-\left(x^2-6x+9\right)\)
\(=-\left(x^2-2\cdot x\cdot3+3^2\right)=-\left(x-3\right)^2\)
l: \(-2x^2+8xy-8y^2\)
\(=-2\left(x^2-4xy+4y^2\right)\)
\(=-2\left(x-2y\right)^2\)
m: \(3x^2+5x-3y^2-5y\)
\(=3\left(x^2-y^2\right)+5\left(x-y\right)\)
\(=3\left(x-y\right)\left(x+y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+3y+5\right)\)
g) 10x²(2x - y) + 6xy(y - 2x)
= 10x²(2x - y) - 6xy(2x - y)
= 2x(2x - y)(5x - 3y)
h) x² - 2x + 1 - y²
= (x² - 2x + 1) - y²
= (x - 1)² - y²
= (x - y - 1)(x + y - 1)
i) 2x(x + 2) + x² (-x - 2)
= 2x(x + 2) - x²(x + 2)
= x(x + 2)(2 - x)
k) -9 + 6x - x²
= -(x² - 6x + 9)
= -(x - 3)²
l) 8xy - 2x² - 8y²
= -2(x² - 4xy + 4y²)
= -2(x - 2y)²
m) 3x² + 5x - 3y² - 5y
= (3x² - 3y²) + (5x - 5y)
= 3(x² - y²) + 5(x - y)
= 3(x - y)(x + y) + 5(x - y)
= (x - y)[3(x + y) + 5]
= (x - y)(3x + 3y + 5)
(x2-y2+6x+9):(x+y+3)
Tính chia:
(x^2-y^2+6x+9):(x+y+3).
\(\frac{x^2-y^2+6x+9}{x+y+3}\)
\(=\frac{\left(x^2+6x+9\right)-y^2}{x+y+3}\)
\(=\frac{\left(x+3\right)^2-y^2}{x+y+3}\)
\(=\frac{\left(x+3+y\right)\left(x+3-y\right)}{x+y+3}\)
\(=x+3-y\)
a(15 xy^2z^3 :(3xyz^2)
b(12 x^y^4 : (-4x^4y^2)
c (-15x^2y^3z^2 ) :(-6xz^2)
d(x-y)^5 : (y-x)^3
(x-y)^5 : (y-x)^2
f(3xy-6x)^3 : 9(2x-y)
a: \(15xy^2z^3:3xyz^2=5yz\)
b: \(12x^4y^4:\left(-4x^4y^2\right)=-3y^2\)
c: \(\dfrac{-15x^2y^3z^2}{-6xz^2}=\dfrac{5}{2}xy^3\)
d: \(\dfrac{\left(x-y\right)^5}{\left(y-x\right)^3}=-\left(x-y\right)^2\)