Số nguyên dương x thỏa mãn (2x2+x)2 - 4(2x2+x) +3 = 0
Tìm tất cả các cặp số nguyên dương (x; y) thỏa mãn điều kiện 2x2 - 2xy + x + y + 2 = 0
\(\Leftrightarrow2x^2+x+2=y\left(2x-1\right)\)
\(\Leftrightarrow y=\dfrac{2x^2+x+2}{2x-1}=x+1+\dfrac{3}{2x-1}\)
\(y\in Z\Rightarrow\dfrac{3}{2x-1}\in Z\)
Mà x nguyên dương \(\Rightarrow2x-1>0\)
\(\Rightarrow2x-1=Ư\left(3\right)\Rightarrow x=\left\{1;2\right\}\)
\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(2;4\right)\)
Nguyên hàm F(x) của hàm số f x = 2 x 2 + x 3 - 4 thỏa mãn điều kiện F(0)=0 là :
A. 2 3 x 3 + x 4 4 - 4 x + 4
B. 2 x 3 - 4 x 4
C. 2 3 x 3 + x 4 4 - 4 x
D. x 3 - x 4 + 2 x
Tìm tất cả các bộ số nguyên dương thỏa mãn phương trình : 2x2 + 2y2 − 5xy + x − 2y + 3 = 0
giúp mình với, mình đang cần gấp
\(2x^2+2y^2-5xy+x-2y+3=0\)
\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)+x-2y+3=0\)
\(\Leftrightarrow\left(x-2y\right)\left(2x-y+1\right)=-3\)
x-2y | -3 | -1 | 1 | 3 |
2x-y+1 | 1 | 3 | -3 | -1 |
x | 1 | 5/3 | -3 | -7/3 |
y | 2 | 4/3 | -2 | -8/3 |
Vậy \(\left(x;y\right)=\left(1;2\right)\) là bộ nghiệm nguyên dương duy nhất
Tìm x, y nguyên dương thỏa mãn x2−2xy+2x2−2xy+2 là số nguyên
Có bao nhiêu giá trị nguyên của tham số m để phương trình m x 2 + 2 x 3 − 2 x 2 − 4 x + 2 = 0 có nghiệm thỏa mãn x ≤ − 3 ?
A. 4
B. Không có giá trị nào của m
C. Vô số giá trị của m
D. 6
Đáp án C
PT ⇔ m x 2 + 2 x 3 − 2 x 2 + 2 x + 2 = 0
→ t = x 2 + 2 x m t 3 − 2 t + 2 = 0 1 .
Ta có: f x = x 2 + 2 x , x ≤ − 3 ⇒ f x ≥ 3 ⇒ t ∈ 3 ; + ∞
1 ⇔ m = 2 t 2 − 2 t 3 = f t với t ∈ 3 ; + ∞ .
Ta có: f ' t = − 4 t 3 + 6 t 4 ⇒ f ' t = 0 ⇔ t = 3 2 ⇒ f t
nghịch biến trên 3 ; + ∞ ⇒ f 3 ; + ∞ t ≤ f 3 = − 2 27
Suy ra m ≤ − 2 27 ⇒ Có vô số giá trị của m.
Số nghiệm nguyên thỏa mãn bất phương trình 2 x 2 − x ≤ 4 là
A. 4
B. 3
C. 2
D. 0
Đáp án A
Ta có 2 x 2 − x ≤ 4 ⇔ x 2 − x − 2 ≤ 0 ⇔ − 1 ≤ x ≤ 2 → x ∈ ℤ x = − 1 ; 0 ; 1 ; 2
cho các số dương x,y,z thỏa mãn x+y+z=1 tìm min của biểu thức
P=√(2x2+xy+2y2) +√(2y2+yz+2z2)+ √(2z2+xz+2x2)
Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)
Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Chứng minh tương tự:
\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)
Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)
Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Bạn tham khảo nhé
https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737
cho x,y là 2 số thực ≠0 thỏa mãn 2x2+ y2/4 +1/x2=4
A=2018+xy
Cho hai số thực dương x,y thỏa mãn 2 x + 2 y = 4 . Tìm giá trị lớn nhất P m a x của biểu thức P = 2 x 2 + y 2 y 2 + x + 9 x y .
A. 26
B. 18
C. 27
D. 12
Cho hai số thực dương x,y thỏa mãn 2 x + 2 y = 4 . Tìm giá trị lớn nhất P m a x của biểu thức P = 2 x 2 + y 2 y 2 + x + 9 x y
A. P m a x = 27 2
B. P m a x = 18
C. P m a x = 27
D. P m a x = 12