Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyên Dương
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 4 2019 lúc 12:17

C = 5 x - x 2 = - x 2 - 5 x = - x 2 - 2 . 5 / 2   x + 5 / 2 2 - 5 / 2 2 = - x - 5 / 2 2 - 25 / 4 = - x - 5 / 2 2 + 25 / 4 V ì - x - 5 / 2 2 ≤ 0 ⇒ - x - 5 / 2 2 + 25 / 4 ≤ 25 / 4

Suy ra: C ≤ 25/4 .

C = 25/4 khi và chỉ khi x - 5/2 = 0 suy ra x = 5/2

Vậy C = 25/4 là giá trị lớn nhất tại x = 5/2 .

Nguyên Dương
Xem chi tiết
Nguyên Dương
Xem chi tiết
Cold Wind
20 tháng 10 2016 lúc 20:54

\(-5x^2+x-7=-5\left(x^2-\frac{1}{5}x+\frac{7}{5}\right)=-5\left(x^2-2\cdot\frac{1}{10}\cdot x+\frac{1}{100}-\frac{1}{100}+\frac{7}{5}\right)\)

\(=-5\left(x-\frac{1}{10}\right)^2+\frac{139}{20}\)

\(-5\left(x-\frac{1}{10}\right)^2+\frac{139}{20}\le\frac{139}{20}\)

GTLN của đa thức trên là 139/20

ThanhNghiem
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2023 lúc 15:31

loading...  loading...  loading...  

Nguyễn Thành Hiếu
Xem chi tiết
Nguyễn Châu Anh
10 tháng 12 2017 lúc 10:46

\(D=\frac{1}{x^2+5x+14}=\frac{1}{\left(x^2+2.\frac{5}{2}x+\frac{5}{2}^2\right)+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\le\frac{1}{\frac{31}{4}}=\frac{4}{31}\)

Dấu "=" xảy ra khi \(\left(x+\frac{5}{2}\right)^2=0\Rightarrow x=-\frac{5}{2}\)

Vậy GTLN của \(D=\frac{4}{31}\)tại \(x=-\frac{5}{2}\)

Trần Thị Kim Ngân
10 tháng 12 2017 lúc 10:53

\(D=\frac{1}{x^2+5x+14}=\frac{1}{\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)

D đạt giá trị lớn nhất khi và chỉ khi \(x+\frac{5}{2}=0\leftrightarrow x=\frac{-5}{2}\)

Vậy \(D=\frac{4}{31}\leftrightarrow x=\frac{-5}{2}\)

NGỌC PHƯƠNG
Xem chi tiết
Trần Ngọc Anh
Xem chi tiết
Trần Trọng Quang
11 tháng 8 2016 lúc 11:08

\(a,A=x^2-6x+11=\left(x-3\right)^2+2\)\(\Leftrightarrow Amin=2\)

Dấu = xảy ra \(\Leftrightarrow x=3\)

Trần Trọng Quang
11 tháng 8 2016 lúc 11:12

\(2x^2+10x-1=2\left(x^2+5x-\frac{1}{2}\right)=2\left(x^2+2.\frac{5}{2}x+\frac{25}{4}-\frac{27}{4}\right)=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\)

\(\Rightarrow Bmin=\frac{-27}{2}.''=''\Leftrightarrow x=\frac{-5}{2}\)

Trần Trọng Quang
11 tháng 8 2016 lúc 11:16

\(5x-x^2=-\left(x^2-5x\right)=-\left(x^2-2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}\right)=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)\(\Leftrightarrow Cmax=\frac{25}{4}.''=''\Leftrightarrow x=\frac{5}{2}\)

Nguyễn Thanh Như Ý.
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 1 2021 lúc 8:43

Ta có: \(A=-2x^2-5x+3\)

\(=-2\left(x^2+\dfrac{5}{2}x-\dfrac{3}{2}\right)\)

\(=-2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{49}{16}\right)\)

\(=-2\left(x+\dfrac{5}{4}\right)^2+\dfrac{49}{8}\)

Ta có: \(\left(x+\dfrac{5}{4}\right)^2\ge0\forall x\)

\(\Rightarrow-2\left(x+\dfrac{5}{4}\right)^2\le0\forall x\)

\(\Rightarrow-2\left(x+\dfrac{5}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)

Dấu '=' xảy ra khi \(x+\dfrac{5}{4}=0\)

hay \(x=-\dfrac{5}{4}\)

Vậy: Giá trị lớn nhất của biểu thức \(A=-2x^2-5x+3\) là \(\dfrac{49}{8}\) khi \(x=-\dfrac{5}{4}\)