phân tích thành nhân tử
a)x2-2x+2y-xy
b) x2+4xy-16+4y2
Phân tích đa thức thành nhân tử:
a) x3 - 2x2 - 2x - 4
b) xy + 1 - x - y
c) x2 - 4xy + 4y2 - 4y
d) 16 - x2 + 2xy - y2
\(a.x^3-2x^2-2x-4\\ =\left(x^3-2x^2\right)-\left(2x-4\right)\\ =x^2\left(x-2\right)-2\left(x-2\right)\\ =\left(x^2-2\right)\left(x-2\right)\)
\(b.xy+1-x-y\\ =\left(xy-x\right)+\left(-y+1\right)\\ =x\left(y-1\right)-\left(y-1\right)\\ =\left(x-1\right)\left(y-1\right)\)
\(c.x^2-4xy+4y^2-4y\\ =\left(x-2y\right)^2-4y\\ =\left(x-2y\right)^2-\left(2y\right)^2\\ =\left(x-2y+2y\right)\left(x-2y-2y\right)\\ =x\left(x-4y\right)\)
\(d.16-x^2+2xy-y^2\\ =4^2-\left(x-y\right)^2\\ =\left(4-x+y\right)\left(4-x-y\right)\)
b: =xy-x-y+1
=x(y-1)-(y-1)
=(x-1)(y-1)
c: =(x-2y)^2-4y
\(=\left(x-2y-2\sqrt{y}\right)\left(x-2y+2\sqrt{y}\right)\)
d: =16-(x^2-2xy+y^2)
=16-(x-y)^2
=(4-x+y)(4+x-y)
Phân tích đa thức thành nhân tử: (Giup e vs nhaaa)
a) 4xy - 20x3y2
b) x2 - y2 + 3x - 3y
c) x2 - ax + xy - ay
d) x2 - 36 + 4xy + 4y2
a: \(=4xy\left(1-5x^2y\right)\)
b: \(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)
c: \(=x\left(x-a\right)+y\left(x-a\right)=\left(x-a\right)\left(x+y\right)\)
d: \(=\left(x+2y\right)^2-36=\left(x+2y+6\right)\left(x+2y-6\right)\)
Phân tích đa thức thành nhân tử:
a. 2x - 1 - x2
b. 8x3 + y6
c. x2 - 16 + 4xy + 4y2
Ai nhanh mk Tick cho , Poi !!~
a ) \(2x-1-x^2\)
\(=\left(x-1\right)-\left(x^2-x\right)\)
\(=\left(x-1\right)\left(1-x\right)\)
\(=-\left(x-1\right)^2\)
b) \(8x^3+y^6\)
\(=\left(2x+y^2\right)\left(4x^2-2xy^2+y^4\right)\)
c) \(x^2-16+4xy+4y^2\)
\(=\left(x^2+4xy+4y^2\right)-16\)
\(=\left(x+2y\right)^2-16\)
\(=\left(x+2y+4\right)\left(x+2y-4\right)\)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
Câu 56:Đa thức x(x – 7) + (7 – x)2 được phân tích thành nhân tử là:
A. (x - 7)(2x + 7) B. (x - 7)(2x - 7) C. 7(x - 7) D. (x - 7)(x + 7)
Câu 57:Phân tích đa thức x2 – 16 – 4xy + 4y2 thành nhân tử ta được:
A. (x – 2y + 4)(x + 2y + 4) B. (x – 2y + 4)(x – 2y – 4)
C. (x – 2y + 4)(x + 2y + 4) D. Không phân tích được
Câu 58:Đa thức (x – 4)2 + (x – 4) được phân tích thành nhân tử là:
A. (x + 4)(x – 4) B. (x – 4)(x – 3) C. (x + 4)(x + 3) D. (x – 4)(x – 5)
phân tích đa thức thành nhân tử
(x2 + 4y2 - 20)2 - 16(xy - 4)2
\(\left(x^2+4y^2-20\right)^2-16\left(xy-4\right)^2=\left(x^2+4y^2-20\right)^2-\left(4xy-16\right)^2=\left(x^2+4y^2-20-4xy+16\right)\left(x^2+4y^2-20+4xy-16\right)=\left[\left(x-2y\right)^2-4\right]\left[\left(x+2y\right)^2-36\right]=\left(x-2y-2\right)\left(x-2y+2\right)\left(x+2y-6\right)\left(x+2y+6\right)\)
\(\left(x^2+4y^2-20\right)^2-\left(4xy-16\right)^2\)
\(=\left(x^2+4y^2-20-4xy+16\right)\left(x^2+4y^2-20+4xy-16\right)\)
\(=\left[\left(x-2y\right)^2-4\right]\left[\left(x+2y\right)^2-36\right]\)
\(=\left(x-2y-2\right)\left(x-2y+2\right)\left(x+2y-6\right)\left(x+2y+6\right)\)
Bài 1. Phân tích các đa thức sau thành nhân tử:
a. 12x3y – 24x2y2 + 12xy3 | b. x2 - 2xy – x2 + 4y2 | c. x2 – 2x - 4y2 + 1 | d. x2 + 3x – 18 |
e. x2 – 6 x +xy - 6y | f. x2 + 2x + 1 - 16 | g. x2 – 2x -3 | h. x2 - 8x +15 |
i. 2x2 + 2xy - x - y | j. x2 - 4x + 4 - 25y2 | k. x2 + 4x -12 | l. x2 + 6x +8 |
m. ax – 2x - a2 +2a | n. x2 - 6xy + 9y2 -25z2 | o. x2 + x – 6 | p. x2 -7 x + 6 |
q. x3- 3x2 + 3x -1 | r. 81 – x2 + 4xy – 4y2 | s. x2 -5x -6 | t. 3x2 - 7x + 2 |
u. 3x2 - 3y2 - 12x – 12y | v. x2 +6x –y2 +9 | w. x2 - 8 x – 9 | x. x4 + 64 |
b: \(=\left(x-y\right)^2-4y^2\)
\(=\left(x-y-2y\right)\left(x-y+2y\right)\)
\(=\left(x-3y\right)\left(x+y\right)\)
c: \(=x\left(x-6\right)+y\left(x-6\right)\)
\(=\left(x-6\right)\left(x+y\right)\)
Câu 1:(2 điểm) Phân tích thành nhân tử:
x2 + 4y2 + 4xy - 16
Câu 2:Phân tích đa thức thành nhân tử:
x3 + x2 + y3 + xy
Câu 1:
$x^2+4y^2+4xy-16=[x^2+(2y)^2+2.x.2y]-16$
$=(x+2y)^2-4^2=(x+2y-4)(x+2y+4)$
Câu 2:
$x^3+x^2+y^3+xy=(x^3+y^3)+(x^2+xy)$
$=(x+y)(x^2-xy+y^2)+x(x+y)=(x+y)(x^2-xy+y^2+x)$
Câu 1:
\(x^2+4y^2+4xy-16\)
\(=\left(x+2y\right)^2-16\)
\(=\left(x+2y+4\right)\left(x+2y-4\right)\)
Câu 2:
\(x^3+x^2+y^3+xy\)
\(=\left(x^3+y^3\right)\left(x^2+xy\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+x\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+x\right)\)
C1:x^2+4y^2+4xy-16
=[x^2+4xy+(2y)^2]-16
=(x+2y)^2-4^2
=(x+2y-4)(x+2y+4)
C2: x^3+x^2+y^3+xy
=(x^2+xy)+(x^3+y^3)
=x(x+y)+(x+y)(x^2-xy+y^2)
=(x+y)(x+x^2-xy+y^2)
bài này ra lâu r nhưng ngứa tay nên giải luôn=)))))
Bài 1. Phân tích đa thức 2x – 4y thành nhân tử được kết quả là:
A.2(x – 2y) B. 2( x + y) C. 4(2x – y) D. 2(x + 2y)
Bài 2. Phân tích đa thức 4x2 – 4xy thành nhân tử được kết quả là:
A.4(x2 – xy) B. x(4x – 4y) C. 4x(x – y) D. 4xy(x – y)
Bài 3. Tại x = 99 giá trị biểu thức x2 + x là:
A.990 B. 9900 C. 9100 D. 99000
Bài 4. Các giá trị của x thỏa mãn biểu thức x2 – 12x = 0 là:
A.x = 0 B. x = 12 C. x = 0 và x = 12 D. x = 11
Giúp mik với mik cảm ơn
Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung:
-x2-4xy-4y2
= \(-\left(x^2+4xy+4y^2\right)\)
= \(-\left(x+2y\right)^2\)
phân tích thành nhân tử
x2+4y2+4xy
Ta thấy: \(x^2+4y^2+4xy=x^2+\left(2y\right)^2+2\cdot x\cdot2y=\left(x+2y\right)^2\)
câu trả lời hay nhất đấy
x^2 + 4xy - 16 + 4y^2
= x^2 + 4xy + 4y^2 - 4^2
= (x + 2y)^2 - 4^2
= (x + 2y - 4)(x + 2y + 4)
2x^2-5xy-3y^2
= 2^x + xy - 6xy - 3y^2
= x(2x + y) - 3y(2x + y)
= (2x + y)(x - 3y)