Tìm x biết \(\left(x+8\right)⋮\left(x^2+1\right)\)
Tìm số nguyên x , biết
\(10\) ⋮ \(\left(x-1\right)\)
\(b.\left(x+5\right)\) ⋮ \(\left(x-2\right)\)
c. \(\left(3x+8\right)\) ⋮ \(\left(x-1\right)\)
a.
\(10⋮\left(x-1\right)\)
\(\Rightarrow x-1=Ư\left(10\right)\)
\(\Rightarrow x-1=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
\(\Rightarrow x=\left\{-9;-4;-1;0;2;3;6;11\right\}\)
b.
\(\left(x+5\right)⋮\left(x-2\right)\Rightarrow\left(x-2\right)+7⋮x-2\)
\(\Rightarrow7⋮x-2\)
\(\Rightarrow x-2=Ư\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Rightarrow x=\left\{-5;1;3;9\right\}\)
c.
\(\left(3x+8\right)⋮\left(x-1\right)\)
\(\Rightarrow\left(3x-3+11\right)⋮\left(x-1\right)\)
\(\Rightarrow3\left(x-1\right)+11⋮x-1\)
\(\Rightarrow11⋮\left(x-1\right)\)
\(\Rightarrow x-1=Ư\left(11\right)=\left\{-11;-1;1;11\right\}\)
\(\Rightarrow x=\left\{-10;0;2;12\right\}\)
\(\text{Tìm x, biết:}\)
\(a\)) \(\left(19x+2.5^2\right):14=\left(13-8\right)^2-4^2\)
\(b\)) \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+30\right)=1240\)
\(c\)) \(11-\left(-53+x\right)=97\)
\(d\)) \(-\left(x+84\right)+213=-16\)
2. Tìm x biết:
a)\(\dfrac{2}{\left(x+2\right)\left(x+4\right)}\) + \(\dfrac{4}{\left(x+4\right)\left(x+8\right)}\) + \(\dfrac{6}{\left(x+8\right)\left(x+14\right)}\) = \(\dfrac{x}{\left(x+2\right)\left(x+14\right)}\).
b)\(\dfrac{x}{2023}\) + \(\dfrac{x+1}{2022}\) + \(\dfrac{x+2}{2021}\) +...+ \(\dfrac{x+2022}{1}\) + 2023 = 0.
Gíup mình giải 2 bài này với!
Cảm ơn các bạn rất nhiều!!!
a/
\(VT=\dfrac{\left(x+4\right)-\left(x+2\right)}{\left(x+2\right)\left(x+4\right)}+\dfrac{\left(x+8\right)-\left(x+4\right)}{\left(x+4\right)\left(x+8\right)}+\dfrac{\left(x+14\right)-\left(x+8\right)}{\left(x+8\right)\left(x+14\right)}=\)
\(=\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+8}+\dfrac{1}{x+8}-\dfrac{1}{x+14}=\)
\(=\dfrac{1}{x+2}-\dfrac{1}{x+14}=\dfrac{12}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\dfrac{12}{\left(x+2\right)\left(x+14\right)}=\dfrac{x}{\left(x+2\right)\left(x+14\right)}\left(x\ne-2;x\ne-14\right)\)
\(\Rightarrow x=12\)
\(\dfrac{x}{2023}+\dfrac{x+1}{2022}+...+\dfrac{x+2022}{1}+2023=0\)
\(\dfrac{1}{2023}x+\dfrac{1}{2022}x+\dfrac{1}{2022}\cdot1+...+\dfrac{1}{1}x+\dfrac{1}{1}\cdot2022+2023=0\)
\(x\left(\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}\right)+\left(\dfrac{1}{2022}+\dfrac{2}{2021}+...+\dfrac{2022}{1}+2023\right)=0\)
\(x\left(\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}\right)=\dfrac{1}{2022}+\dfrac{2}{2021}+...+\dfrac{2022}{1}+2023\)
\(x=\dfrac{\dfrac{1}{2022}+\dfrac{2}{2021}+...+\dfrac{2022}{1}+2023}{\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}}\)
\(x=\dfrac{\dfrac{1}{2022}+\dfrac{2022}{2022}+\dfrac{2}{2021}+\dfrac{2021}{2021}+...+\dfrac{2022}{1}+\dfrac{1}{1}}{\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}}\)
\(x=\dfrac{\dfrac{2023}{2022}+\dfrac{2023}{2021}+...+\dfrac{2023}{1}}{\dfrac{1}{2022}+\dfrac{1}{2021}+...+\dfrac{1}{1}}=2023\)
Vậy x = 2023
Tìm x, biết:
\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)
\(49\left(x^2+2x+1\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)=11\)
\(4x^2+8x+4+4x^2-4x+1-8x^2+8-11=0\)
\(4x+2=0\)
\(4x=2\)
\(x=-\frac{1}{2}\)
<=>4(x2+2x+1)+4x2-4x+1-8x2+8-11=0
<=>4x2+8x+4+4x2-4x+1-8x2+8-11=0
<=>4x+2=0
<=>2(2x+1)=0
<=>2x+1=0
<=>x=-1/2
XL mik nhầm
\(=\frac{1}{2}\)
~~~~~~~~~~
..........
////////////////
Tìm x biết:
\(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{5}{\left(x-3\right)\left(x-8\right)}+\frac{12}{\left(x-8\right)\left(x-20\right)}-\frac{1}{x-20}=\frac{3}{4}\)
Tìm x biết: \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2\)=\(\left(x+4\right)^2\)
Đặt \(t=\left(x+\frac{1}{x}\right)^2\)\(\Rightarrow\)\(x^2+\frac{1}{x^2}=t-2\)điều kiện t>=0,x # 0
Phương trình trở thành
8t +4(t-2)2 - 4(t-2)2t =(x+4)2
8t + 4t2 - 16t + 16 -4t3 + 16t2 - 16t=(x+4)2
-4t3 + 20t2 -24t=x2 +8x
-4t(t2 -5t +6)=x(x+8)
-4t(t-2)(t-3)=x(x+8)
Mình chỉ giúp dược tới đó
tìm x biết x ko thuoc {1;3;8;20} va
\(\frac{2}{\left(x-1\right).\left(x-3\right)}+\frac{3}{\left(x-3\right).\left(x-8\right)}+\frac{12}{\left(x-8\right).\left(x-20\right)}-\frac{1}{x-20}=\frac{-3}{4}\)
Tìm x biết \(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{5}{\left(x-3\right)\left(x-8\right)}+\frac{12}{\left(x+8\right)\left(x+20\right)}-\frac{1}{20}=-\frac{3}{4}\)
Tìm số tự nhiên x , biết
\(2\cdot\left(x-1\right)^2=8\)
\(\left(2x+1\right)^3=125\)
\(\left(x-2\right)^5=243\)
\(5\left(x-4\right)^2-7=13\)
\(221-\left(3x+2\right)^3=96\)
so sánh: \(A=26^2-24^2\) và \(B=27^2-25^2\)
tìm x, biết:
\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)
Bài 1:
\(A=26^2-24^2=\left(26-24\right)\left(26+24\right)=2\cdot50=100\)
\(B=27^2-25^2=\left(27-25\right)\left(27+25\right)=2\cdot52=104\)
=>A<B
Bài 2:
\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)
=>\(4\left(x^2+2x+1\right)+4x^2-4x+1-8\left(x^2-1\right)=11\)
=>\(4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)
=>4x+13=11
=>4x=-2
=>\(x=-\dfrac{1}{2}\)