Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Tuyến
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2021 lúc 22:02

\(A=139\)

\(\Leftrightarrow720:\left(x-6\right)=40\)

\(\Leftrightarrow x-6=18\)

hay x=24

Nguyễn Mai Lan
16 tháng 10 2021 lúc 9:52

24

nguyen thi le thanh
Xem chi tiết
Nguyen Hoang Dieu
Xem chi tiết
Nguyễn Thị BÍch Hậu
28 tháng 6 2015 lúc 19:48

1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5

Trần Thị Loan
28 tháng 6 2015 lúc 20:09

2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b|  \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0 

Ta có: B = |2x - 1| + |3 - 2x| + 5  \(\ge\) |2x - 1+3 - 2x| + 5  = |2| + 5 = 7

=> Min B = 7 khi

(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0 

Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\)  0 

=> x \(\ge\) 1/2 và x  \(\le\) 3/2

 

online marth
Xem chi tiết
kudo shinichi
30 tháng 7 2018 lúc 16:03

\(B=\left|2x+7\right|-1\)

Ta có: \(\left|2x+7\right|\ge0\forall x\)

\(\Rightarrow\left|2x+7\right|-1\ge-1\)

\(B=-1\Leftrightarrow\left|2x+7\right|=0\Leftrightarrow x=-3,5\)

Vậy \(B_{min}=-1\Leftrightarrow x=-3,5\)

\(C=-\left|5x-3\right|-2\)

Ta có: \(\left|5x-3\right|\ge0\forall x\)

\(-\left|5x-3\right|\le0\forall x\)

\(\Rightarrow-\left|5x-3\right|-2\le-2\forall x\)

\(C=-2\Leftrightarrow\left|5x-3\right|=0\Leftrightarrow x=\frac{3}{5}\)

Vậy \(C_{max}=-2\Leftrightarrow x=\frac{3}{5}\)

Câu D tương tự câu C

Tham khảo nhé~

Nguyễn Hoài Thương
Xem chi tiết
Hoàng Phúc
1 tháng 7 2016 lúc 21:26

\(a,A=4-x^2+2x=4-\left(x^2-2x\right)=4-\left(x^2-2x+1-1\right)\)

\(=4-\left[\left(x-1\right)^2-1\right]=4-\left(x-1\right)^2+1=5-\left(x-1\right)^2\)

\(\left(x-1\right)^2\ge0=>-\left(x-1\right)^2\le0=>5-\left(x-1\right)^2\le5\) (với mọi x)

Dấu "=" xảy ra \(< =>\left(x-1\right)^2=0< =>x=1\)

Vậy MaxA=5 khi x=1

\(b,B=4x-x^2=-x^2+4x=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)\)

\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4=4-\left(x-2\right)^2\)

\(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>4-\left(x-2\right)^2\le4\) (với mọi x)

Dấu "=" xảy ra \(< =>\left(x-2\right)^2=0< =>x=2\)

Vậy MaxB=4 khi x=2

o0o I am a studious pers...
1 tháng 7 2016 lúc 21:24

a) \(4-x^2+2x\)

\(=-\left(x^2-2x-4\right)\)

\(=-\left(x^2-2x+1-5\right)\)

\(=-\left(\left(x-1\right)^2-5\right)\)

\(=5-\left(x-1\right)^2\ge5\)

MIn A = 5 khi \(x-1=0=>x=1\)

b) \(4x-x^2\)

\(=-\left(x^2-4x+4-4\right)\)

\(=>-\left(\left(x-2\right)^2-4\right)\)

\(=4-\left(x-2\right)\ge4\)

MIN B = 4 khi \(x-2=0=>x=2\)

Ủng hộ nha tối rồi

Nguyễn Phương Anh
Xem chi tiết
alibaba nguyễn
20 tháng 3 2021 lúc 10:48

\(B=-2x^2-x+\frac{25}{8}=-\left(2x^2+x+\frac{1}{8}\right)+\frac{13}{4}=-\left(\sqrt{2}x+\frac{1}{2\sqrt{2}}\right)^2+\frac{13}{4}\le\frac{13}{4}\)

Dấu = xảy ra khi:

\(\sqrt{2}x+\frac{1}{2\sqrt{2}}=0\)

\(\Leftrightarrow x=-\frac{1}{4}\)

Khách vãng lai đã xóa
kimchitran
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 4 2022 lúc 12:14

\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)

GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)

Biểu thức ko tồn tại GTLN

phanthilinh
Xem chi tiết
huy0
Xem chi tiết
Akai Haruma
24 tháng 3 2023 lúc 23:37

Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$A=(|2x-4|+|2x-8|)+|2x-6|=(|2x-4|+|8-2x|)+|2x-6|$

$\geq |2x-4+8-2x|+|2x-6|$

$=4+|2x-6|\geq 4$
Vậy $A_{\min}=4$. Giá trị này đạt tại \(\left\{\begin{matrix} (2x-4)(8-2x)\geq 0\\ 2x-6=0\end{matrix}\right.\Leftrightarrow x=3\)

Nguyễn Ngân
Xem chi tiết