Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khánh Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 1 2021 lúc 17:20

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\)

Tương tự: \(b+c\ge2\sqrt{bc}\) ; \(c+a\ge2\sqrt{ca}\)

Nhân vế với vế:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\) hay tam giác đã cho là tam giác đều

Cao Thanh Nga
Xem chi tiết
Lemon Candy
Xem chi tiết
ngô xuân tùng
Xem chi tiết
Thuỳ Linh Nguyễn
8 tháng 8 2023 lúc 22:33

bạn Tham khảo bài bạn này 

vvvvvvvv
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 1 2021 lúc 20:24

Đặt b+c-a=2x; c+a-b=2y; a+b-c=2z

hay \(a=y+z;b=x+z;c=x+y\) và \(\left\{{}\begin{matrix}x=\dfrac{b+c-a}{2}\\y=\dfrac{c+a-b}{2}\\z=\dfrac{a+b-c}{2}\end{matrix}\right.\)

Áp dụng BĐT Cosi, ta được: 

\(\left\{{}\begin{matrix}x+y\ge2\sqrt{xy}\\y+z\ge2\sqrt{yz}\\x+z\ge2\sqrt{xz}\end{matrix}\right.\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8xyz\)

\(\Leftrightarrow abc\ge8\cdot\dfrac{b+c-a}{2}\cdot\dfrac{c+a-b}{2}\cdot\dfrac{a+b-c}{2}\)

\(\Leftrightarrow abc\ge\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\)

\(\Leftrightarrow\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)(đpcm)

Trần Minh Hoàng
17 tháng 1 2021 lúc 20:17

Ta có: \(\left(b+c-a\right)\left(c+a-b\right)=c^2-\left(a-b\right)^2\le c^2\);

\(\left(c+a-b\right)\left(a+b-c\right)=a^2-\left(b-c\right)^2\le a^2\);

\(\left(a+b-c\right)\left(b+c-a\right)=b^2-\left(c-a\right)^2\le b^2\).

Nhân vế với vế của các bđt trên với chú ý a + b - c > 0; b + c - a > 0; c + a - b > 0 ta có:

\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\)

\(\Leftrightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\).

Đẳng thức xảy ra khi và chỉ khi a = b = c.

Mở rộng: Nếu a, b, c là các số thực không âm thì bđt đó vẫn đúng.

Cao Thanh Nga
Xem chi tiết
Đinh quang hiệp
20 tháng 6 2018 lúc 16:03

vì a;b;c là độ dài 3 cạnh của 1 tam giác áp dụng bđt tam giác ta có\(\Rightarrow\hept{\begin{cases}a+b>c\Rightarrow a+b-c>0\\a+c>b\Rightarrow a+c-b>0\\b+c>a\Rightarrow b+c-a>0\end{cases}}\)

\(\Rightarrow\sqrt{a+b-c};\sqrt{a+c-b};\sqrt{b+c-a}\)luôn được xác định\(\left(\sqrt{a+b-c}-\sqrt{a+c-b}\right)>=0\Rightarrow a+b-c-2\sqrt{\left(a+b-c\right)\left(a+c-b\right)}+a+c-b\)\(>=0\Rightarrow a+b-c+a+c-b>=2\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\Rightarrow\frac{a+b-c+a+c-b}{2}=\frac{2a}{2}\)

\(=a>=\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\)

tương tự ta có :\(b>=\sqrt{\left(a+b-c\right)\left(b+c-a\right)};c>=\sqrt{\left(a+c-b\right)\left(b+c-a\right)}\)

\(\Rightarrow abc>=\sqrt{\left(a+b-c\right)^2\left(a+c-b\right)^2\left(b+c-a\right)^2}=\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)

dấu = xảy ra khi a=b=c

Đinh quang hiệp
20 tháng 6 2018 lúc 16:07

dòng 3 là vì  \(\left(\sqrt{a+b-c}-\sqrt{a+c-b}\right)^2>=0\)nhá

ANHOI
Xem chi tiết
Hoàng Lê Bảo Ngọc
17 tháng 8 2016 lúc 7:19

Ta có : a+b > c , b+c > a , c+a > b

Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)

Vậy ta có đpcm

Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)

le dinh dung
Xem chi tiết
Ben 10
1 tháng 8 2017 lúc 14:54

a,b,c thuộc N nữa phương tề. 

giả sử b và c đều ko chia hết cho 3 

=> b^2;c^2 chia 3 dư 1 hoặc dư 2 

=> a^2 chia 3 dư 2 hoặc 1 (tương ứng ở trên) 

=> a^2 có dạng 3k+2 hoặc 3k+1 

xét các k=1;2;3 thì a đều ko thuộc N => vô lý 

=> DPCM 

làm dc rk thôi, ko làm dc nữa 

---kenny cold----

Nguồn:myself

cách 2

b hoặc c chỉ chia hết cho 3 nếu a là bội số của 5 tức là a = 5k với k là số tự nhiên. 

Còn trong các trường hợp khác thì không, 

thí dụ: 

a = 5 thì b = 3 và c =4 vậy b chia hết cho 3. 

a = 10 thì b = 6 và c = 8 vậy trong hai số có b chia hết cho 3 tức là b hoặc c chia hết cho 3

cách 3

nếu a, b, c là ba cạnh của một tam giác vuông (a là cạnh huyền) thì b hoặc c chia hết cho 3? 

Đề này có vấn đề rồi ví dụ nhé : 

Trên hai cạnh của góc vuông xAy đặt AB = AC = 4 . 

Tam giác ABC vuông cạnh huyền BC = a 

cạnh AC = b, cạnh AB = c cả hai cạnh này đều không chia hết cho 3

Võ Tá Khương Duy
Xem chi tiết
Song tử
Xem chi tiết